Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 22010093-6    https://doi.org/10.11896/cldb.22010093
  高熵合金* |
AlMgLi0.5Zn0.5Cu0.2轻质高熵合金的组织和耐腐蚀性研究
胡勇1,2, 刘飞1,2, 刘员员1,2, 赵龙志1,2, 焦海涛1,2, 唐延川1,2, 刘德佳1,2
1 华东交通大学材料科学与工程学院,南昌 330013
2 南昌市载运工具先进材料与激光增材制造重点实验室,南昌 330013
Study on Microstructure and Corrosion Resistance of AlMgLi0.5Zn0.5Cu0.2 Light-weight High-entropy Alloy
HU Yong1,2, LIU Fei1,2, LIU Yuanyuan1,2, ZHAO Longzhi1,2, JIAO Haitao1,2, TANG Yanchuan1,2, LIU Dejia1,2
1 School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
2 Key Laboratory of Advanced Materials for Vehicles & Laser Additive Manufacturing of Nanchang City, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 3418KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Al、Mg、Li、Cu、Zn 五种元素,通过磁悬浮熔炼制备了AlMgLi0.5Zn0.5Cu0.2轻质高熵合金。利用XRD、SEM分析了热处理对AlMgLi0.5Zn0.5-Cu0.2轻质高熵合金微观组织形貌的影响。利用ES-D电子天平和CS350电化学工作站检测了AlMgLi0.5Zn0.5Cu0.2轻质高熵合金的密度和耐腐蚀性。结果表明:AlMgLi0.5Zn0.5Cu0.2轻质高熵合金的密度为2.851 g/cm3。经过热处理后,AlMgLi0.5Zn0.5Cu0.2轻质高熵合金晶界处含Mg32(AlZn)49相的共晶组织减少,形貌由条状变为点状。经过300 ℃热处理以后,FCC1相枝晶组织细化且变得更加均匀;FCC1相中的Cu元素固溶到基体内,提高了合金的耐腐蚀性能。但是经过300 ℃+120 ℃热处理后,FCC1相变为等轴状,FCC1基体表面有FCC2(富Cu相)析出,构成了微小腐蚀电池,降低了合金的耐腐蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡勇
刘飞
刘员员
赵龙志
焦海涛
唐延川
刘德佳
关键词:  轻质高熵合金  AlMgLi0.5Zn0.5Cu0.2  显微组织  耐腐蚀性    
Abstract: AlMgLi0.5Zn0.5Cu0.2 light-weight high-entropy alloy was fabricated by magnetic levitation melting with five light weight elements Al, Mg, Li, Cu and Zn. The effect of heat treatment on the microstructure of the AlMgLi0.5Zn0.5Cu0.2 light-weight high-entropy alloy was analyzed by XRD and SEM. The density and corrosion resistance of the AlMgLi0.5Zn0.5Cu0.2 light-weight high-entropy alloy were tested by ES-D electronic balance and CS350 electrochemical workstation, respectively. The results show that the density of the AlMgLi0.5Zn0.5Cu0.2 light-weight high-entropy alloy is 2.851 g/cm3. The eutectic microstructure containing Mg32(AlZn)49 phase at the grain boundary of the AlMgLi0.5Zn0.5Cu0.2 light-weight high-entropy alloy decreases and its morphology changes from strip to point after heat treatment. The dendrite microstructure of FCC1 phase becomes finer and more uniform. After the heat treatment at 300 ℃, the Cu element on the surface of FCC1 phase is solidly dissolved into the matrix, improving the corrosion resistance of the alloy. However, after the heat treatment at 300 ℃+120 ℃, FCC1 becomes equiaxed and FCC2 (Cu-rich phase) precipitates on the substrate surface of FCC1, forming a micro-corrosion battery, which reduces the corrosion resistance of the alloy.
Key words:  light-weight high-entropy alloy    AlMgLi0.5Zn0.5Cu0.2    microstructure    corrosition resistance
发布日期:  2022-07-26
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51865011);江西省自然科学基金(20212BAB204008)
通讯作者:  huyong2136@163.com   
作者简介:  胡勇,华东交通大学材料科学与工程学院教授、硕士研究生导师。2004年于南昌大学机电工程学院材料成型及控制工程专业本科毕业,2009年于南昌大学机电工程学院材料加工工程专业博士毕业,然后到华东交通大学工作至今。目前主要从事激光加工、高熵合金、半固态成形等方面的研究工作,发表论文60余篇。
引用本文:    
胡勇, 刘飞, 刘员员, 赵龙志, 焦海涛, 唐延川, 刘德佳. AlMgLi0.5Zn0.5Cu0.2轻质高熵合金的组织和耐腐蚀性研究[J]. 材料导报, 2022, 36(14): 22010093-6.
HU Yong, LIU Fei, LIU Yuanyuan, ZHAO Longzhi, JIAO Haitao, TANG Yanchuan, LIU Dejia. Study on Microstructure and Corrosion Resistance of AlMgLi0.5Zn0.5Cu0.2 Light-weight High-entropy Alloy. Materials Reports, 2022, 36(14): 22010093-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010093  或          http://www.mater-rep.com/CN/Y2022/V36/I14/22010093
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
2 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19(5), 698.
3 Hemphill M A, Yuan T, Wang G Y, et al. Acta Materialia, 2012, 60(16), 5723.
4 Qiao J W, Ma S G, Huang E W, et al. Materials Science Forum, 2011, 688, 419.
5 Chen Q S, Lu Y P, Dong Y, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(9), 7.
6 Cheng H, Xie Y C, Tang Q H, et al. Transactions of Nonferrous Metals Society of China, 2018, 28(7), 91.
7 Zhao H C, Liang X B, Qiao Y L, et al. Journal of Aeronautical Mate-rials, 2019, 39(5), 65(in Chinese).
赵海朝, 梁秀兵, 乔玉林, 等. 航空材料学报, 2019, 39(5), 65.
8 Li M, Yang C B, Zhang J, et al. Materials Reports A:Review Papers, 2020, 34(11), 21125(in Chinese).
李萌, 杨成博, 张静, 等. 材料导报:综述篇,2020,34(11),21125.
9 Ching W Y, San S, Brechtl J, et al. NPJ Computational Materials, 2020,10(1), 1296.
10 Soni V, Senkov O N, Gwalani B, et al. Scientific Reports, 2018, 8(1), 8816.
11 Youssef K M, Zaddach A J, Niu C, et al. Materials Research Letters, 2015, 2(5),1.
12 Jia Y, Jia Y, Wu S, et al. Materials, 2019, 12(7), 1136.
13 Yang X, Chen S Y, Cotton J D, et al. JOM, 2014, 66(10), 2009.
14 Lin C M, Tsai H L, Bor H Y. Intermetallics, 2010, 18(6), 1244.
15 Wen X, Jin G, Pang X J, et al. Materials Reports B:Research Papers, 2017, 31(6), 79(in Chinese).
温鑫, 金国, 庞学佳, 等. 材料导报:研究篇, 2017, 31(6), 79.
16 Jiang S Y, Lin Z F, Xu H M. Transactions of Nonferrous Metals Society of China, 2019, 29(2), 110(in Chinese).
蒋淑英, 林志峰, 许红明. 中国有色金属学报, 2019, 29(2), 110.
17 Zhang Y C, Yang Y R, Li J W, et al. Material Science, 2021, 11(3), 9(in Chinese).
张祎梣, 杨颜如, 李嘉雯, 等. 材料科学, 2021, 11(3), 9.
18 Liu Y, Cao Y K, Wu W Q, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(9), 30(in Chinese).
刘咏, 曹远奎, 吴文倩, 等. 中国有色金属学报, 2019, 29(9), 30.
19 Rui F, Michael G, Chanho L, et al. Materials Chemistry and Physics, 2012, 132(2-3), 233.
20 Yang X, Zhang Y. Materials & Chemistry and Physics, 2012, 132(2-3), 233.
21 Yurchenko N Y, Stepanov N D, Gridneva A O, et al. Journal of Alloys and Compounds, 2018, 757, 403.
22 Shao L, Zhao T, Li L, et al. Journal of Materials Engineering and Performance, 2018, 27(12), 6648.
23 Zhang Y, Lu Z P, Ma S G, et al. MRS Communications,2014,4(2),57.
24 Zhou Y J, Zhang Y, Wang Y L, et al. Applied Physics Letters, 2007, 90(18), 253.
25 Zhao Z K, Zhou T T, Liu P Y, et al. Special Casting & Nonferrous Alloys, 2003(5), 12(in Chinese).
赵中魁, 周铁涛, 刘培英, 等. 特种铸造及有色合金, 2003(5), 12.
26 Yang M B, Pan F S, Li Z S, et al. The Chinese Journal of Nonferrous Metals, 2008, 18(7), 8(in Chinese).
杨明波, 潘复生, 李忠盛, 等. 中国有色金属学报,2008,18(7),8.
27 Liu Q, Wang X Y, Huang Y B, et al. Chinese Journal of Materials Research, 2020, 34(11), 7(in Chinese).
刘谦, 王昕阳, 黄燕滨, 等. 材料研究学报, 2020, 34(11), 7.
28 Abdulahad S, Kang B, Ryu H J, et al. Applied Surface Science, 2019, 485, 368.
29 Yan X, Guo H, Yang W, et al. Journal of Alloys and Compounds, 2021, 860, 158436.
30 Zhou Z, Wang L, Zhao X, et al. Surface and Interfaces, 2021, 23, 100956.
31 Li Q, Liu H X, Zhang X W, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(11), 2805(in Chinese).
李琦, 刘洪喜, 张晓伟,等.中国有色金属学报,2014,24(11),2805.
32 Zou Y. Effect of composition and treatment technology on deformation mechanism and properties of Mg-Li alloy. Ph.D. Thesis, Harbin Engineering University, China, 2016(in Chinese).
邹云. 镁锂合金成分和处理工艺对变形机制及性能的影响. 博士学位论文, 哈尔滨工程大学, 2016.
33 Dai Y, Gan Z H, Zhou H H, et al. Corrosion and Protection, 2014, 35(9), 871(in Chinese).
戴义, 甘章华, 周欢华, 等. 腐蚀与防护, 2014, 35(9), 871.
34 Marlaud T, Deschamps A, Bley F, et al. Acta Materialia, 2010, 58(1), 248.
35 Zhang Z L, Wang S Q, Xu B L, et al. Chinese Journal of Materials Research, 2021, 35(3), 8(in Chinese).
张泽灵, 王世琦, 徐邦利, 等. 材料研究学报, 2021, 35(3), 8.
36 Bao Y Y, Ji X L, Gu P, et al. Tribology, 2017, 37(4), 421(in Chinese).
鲍亚运, 纪秀林, 顾鹏, 等. 摩擦学学报, 2017, 37(4), 421.
[1] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[2] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[3] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[4] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[5] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[6] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[7] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[8] 种振曾, 孙耀宁, 程旺军, 韩晨阳, 苏才津, 娜菲沙·迪力夏提, 樊子龙. 纳米WC对AlCoCrFeNi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2022, 36(14): 22030230-6.
[9] 李芳, 李才巨, 彭巨擘, 易健宏, 高鹏, 张家涛, 关洪达, 关一凡. 锡锌系无铅钎料合金化研究进展[J]. 材料导报, 2022, 36(13): 20010038-10.
[10] 王权, 吴长军, 徐雪薇, 彭浩平, 刘亚, 苏旭平. 退火处理对CoxCrFeMnNi2-x高熵合金显微组织和耐蚀性的影响[J]. 材料导报, 2022, 36(11): 21110150-7.
[11] 宋子威, 于燕, 朱义新, 刘臻. PREP法制备CoCrMoW合金粉末的特性及显微组织[J]. 材料导报, 2022, 36(10): 19060192-5.
[12] 赵帆, 胡昊, 刘雅政, 张志豪, 谢建新. 基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制[J]. 材料导报, 2022, 36(1): 20100217-6.
[13] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[14] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[15] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed