Study on Microstructure and Corrosion Resistance of AlMgLi0.5Zn0.5Cu0.2 Light-weight High-entropy Alloy
HU Yong1,2, LIU Fei1,2, LIU Yuanyuan1,2, ZHAO Longzhi1,2, JIAO Haitao1,2, TANG Yanchuan1,2, LIU Dejia1,2
1 School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China 2 Key Laboratory of Advanced Materials for Vehicles & Laser Additive Manufacturing of Nanchang City, Nanchang 330013, China
Abstract: AlMgLi0.5Zn0.5Cu0.2 light-weight high-entropy alloy was fabricated by magnetic levitation melting with five light weight elements Al, Mg, Li, Cu and Zn. The effect of heat treatment on the microstructure of the AlMgLi0.5Zn0.5Cu0.2 light-weight high-entropy alloy was analyzed by XRD and SEM. The density and corrosion resistance of the AlMgLi0.5Zn0.5Cu0.2 light-weight high-entropy alloy were tested by ES-D electronic balance and CS350 electrochemical workstation, respectively. The results show that the density of the AlMgLi0.5Zn0.5Cu0.2 light-weight high-entropy alloy is 2.851 g/cm3. The eutectic microstructure containing Mg32(AlZn)49 phase at the grain boundary of the AlMgLi0.5Zn0.5Cu0.2 light-weight high-entropy alloy decreases and its morphology changes from strip to point after heat treatment. The dendrite microstructure of FCC1 phase becomes finer and more uniform. After the heat treatment at 300 ℃, the Cu element on the surface of FCC1 phase is solidly dissolved into the matrix, improving the corrosion resistance of the alloy. However, after the heat treatment at 300 ℃+120 ℃, FCC1 becomes equiaxed and FCC2 (Cu-rich phase) precipitates on the substrate surface of FCC1, forming a micro-corrosion battery, which reduces the corrosion resistance of the alloy.
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299. 2 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19(5), 698. 3 Hemphill M A, Yuan T, Wang G Y, et al. Acta Materialia, 2012, 60(16), 5723. 4 Qiao J W, Ma S G, Huang E W, et al. Materials Science Forum, 2011, 688, 419. 5 Chen Q S, Lu Y P, Dong Y, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(9), 7. 6 Cheng H, Xie Y C, Tang Q H, et al. Transactions of Nonferrous Metals Society of China, 2018, 28(7), 91. 7 Zhao H C, Liang X B, Qiao Y L, et al. Journal of Aeronautical Mate-rials, 2019, 39(5), 65(in Chinese). 赵海朝, 梁秀兵, 乔玉林, 等. 航空材料学报, 2019, 39(5), 65. 8 Li M, Yang C B, Zhang J, et al. Materials Reports A:Review Papers, 2020, 34(11), 21125(in Chinese). 李萌, 杨成博, 张静, 等. 材料导报:综述篇,2020,34(11),21125. 9 Ching W Y, San S, Brechtl J, et al. NPJ Computational Materials, 2020,10(1), 1296. 10 Soni V, Senkov O N, Gwalani B, et al. Scientific Reports, 2018, 8(1), 8816. 11 Youssef K M, Zaddach A J, Niu C, et al. Materials Research Letters, 2015, 2(5),1. 12 Jia Y, Jia Y, Wu S, et al. Materials, 2019, 12(7), 1136. 13 Yang X, Chen S Y, Cotton J D, et al. JOM, 2014, 66(10), 2009. 14 Lin C M, Tsai H L, Bor H Y. Intermetallics, 2010, 18(6), 1244. 15 Wen X, Jin G, Pang X J, et al. Materials Reports B:Research Papers, 2017, 31(6), 79(in Chinese). 温鑫, 金国, 庞学佳, 等. 材料导报:研究篇, 2017, 31(6), 79. 16 Jiang S Y, Lin Z F, Xu H M. Transactions of Nonferrous Metals Society of China, 2019, 29(2), 110(in Chinese). 蒋淑英, 林志峰, 许红明. 中国有色金属学报, 2019, 29(2), 110. 17 Zhang Y C, Yang Y R, Li J W, et al. Material Science, 2021, 11(3), 9(in Chinese). 张祎梣, 杨颜如, 李嘉雯, 等. 材料科学, 2021, 11(3), 9. 18 Liu Y, Cao Y K, Wu W Q, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(9), 30(in Chinese). 刘咏, 曹远奎, 吴文倩, 等. 中国有色金属学报, 2019, 29(9), 30. 19 Rui F, Michael G, Chanho L, et al. Materials Chemistry and Physics, 2012, 132(2-3), 233. 20 Yang X, Zhang Y. Materials & Chemistry and Physics, 2012, 132(2-3), 233. 21 Yurchenko N Y, Stepanov N D, Gridneva A O, et al. Journal of Alloys and Compounds, 2018, 757, 403. 22 Shao L, Zhao T, Li L, et al. Journal of Materials Engineering and Performance, 2018, 27(12), 6648. 23 Zhang Y, Lu Z P, Ma S G, et al. MRS Communications,2014,4(2),57. 24 Zhou Y J, Zhang Y, Wang Y L, et al. Applied Physics Letters, 2007, 90(18), 253. 25 Zhao Z K, Zhou T T, Liu P Y, et al. Special Casting & Nonferrous Alloys, 2003(5), 12(in Chinese). 赵中魁, 周铁涛, 刘培英, 等. 特种铸造及有色合金, 2003(5), 12. 26 Yang M B, Pan F S, Li Z S, et al. The Chinese Journal of Nonferrous Metals, 2008, 18(7), 8(in Chinese). 杨明波, 潘复生, 李忠盛, 等. 中国有色金属学报,2008,18(7),8. 27 Liu Q, Wang X Y, Huang Y B, et al. Chinese Journal of Materials Research, 2020, 34(11), 7(in Chinese). 刘谦, 王昕阳, 黄燕滨, 等. 材料研究学报, 2020, 34(11), 7. 28 Abdulahad S, Kang B, Ryu H J, et al. Applied Surface Science, 2019, 485, 368. 29 Yan X, Guo H, Yang W, et al. Journal of Alloys and Compounds, 2021, 860, 158436. 30 Zhou Z, Wang L, Zhao X, et al. Surface and Interfaces, 2021, 23, 100956. 31 Li Q, Liu H X, Zhang X W, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(11), 2805(in Chinese). 李琦, 刘洪喜, 张晓伟,等.中国有色金属学报,2014,24(11),2805. 32 Zou Y. Effect of composition and treatment technology on deformation mechanism and properties of Mg-Li alloy. Ph.D. Thesis, Harbin Engineering University, China, 2016(in Chinese). 邹云. 镁锂合金成分和处理工艺对变形机制及性能的影响. 博士学位论文, 哈尔滨工程大学, 2016. 33 Dai Y, Gan Z H, Zhou H H, et al. Corrosion and Protection, 2014, 35(9), 871(in Chinese). 戴义, 甘章华, 周欢华, 等. 腐蚀与防护, 2014, 35(9), 871. 34 Marlaud T, Deschamps A, Bley F, et al. Acta Materialia, 2010, 58(1), 248. 35 Zhang Z L, Wang S Q, Xu B L, et al. Chinese Journal of Materials Research, 2021, 35(3), 8(in Chinese). 张泽灵, 王世琦, 徐邦利, 等. 材料研究学报, 2021, 35(3), 8. 36 Bao Y Y, Ji X L, Gu P, et al. Tribology, 2017, 37(4), 421(in Chinese). 鲍亚运, 纪秀林, 顾鹏, 等. 摩擦学学报, 2017, 37(4), 421.