Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 19060192-5    https://doi.org/10.11896/cldb.19060192
  金属与金属基复合材料 |
PREP法制备CoCrMoW合金粉末的特性及显微组织
宋子威1, 于燕1,*, 朱义新2, 刘臻3
1 长春工业大学先进结构材料省部共建教育部重点实验室,长春 130012
2 吉化辽源化工责任有限公司,吉林 辽源 136200
3 吉林省科学技术信息研究所,长春 130021
Properties and Microstructure of CoCrMoW Alloy Powder Prepared by PREP Method
SONG Ziwei1, YU Yan1,*, ZHU Yixin2, LIU Zhen3
1 Key Laboratory of Advanced Structural Materials and Ministry of Education, Changchun University of Technology, Changchun 130012, China
2 Jihua Liaoyuan Chemical Co., Ltd., Liaoyuan 136200, Jilin, China
3 Science and Technology Information Institute of Jilin Province ,Changchun 130021, China
下载:  全 文 ( PDF ) ( 5440KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用等离子旋转电极雾化(PREP)法在30 000 r/min的工艺参数下制备了钴铬合金粉末,对粉末的形貌、粒度、物相组成以及成分进行表征。结果表明:合金粉末以球形颗粒为主,存在少量异形颗粒,粒径主要分布在22~58 μm,粒径d≥42.16 μm的合金粉末表面为枝晶组织, 而粒径d≤27.91 μm的合金粉末表面则为部分光滑的微晶组织,粒径d在27.91~42.16 μm的合金粉末表面同时具有胞状晶和枝晶组织。晶界间观察到难溶的W元素相,其起到钉扎作用并抑制晶粒的长大;粉末的组成物相为γ相、Co7Mo6相和Co3W相;Cr原子自粉末芯部向表面扩散,产生表面偏析;原始铸态棒材组织中存在30~50 μm的Co7Mo6、Co3W相富集区,熔融半扩散状态下制备微米级粉末导致粉末的颗粒间Mo、W含量不同,CoCrMoW细粉的制备与随机分布,可改善快速成形工艺中高熔点元素偏析所产生的性能缺陷。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋子威
于燕
朱义新
刘臻
关键词:  钴铬钼钨合金粉末  等离子旋转电极雾化  粒度分布  显微组织    
Abstract: Cobalt-chromium alloy powders were prepared by plasma rotating electrode process (PREP) under the process parameters of 30 000 r/min. The morphology, particle size, phases and composition of the alloy powders were characterized. The results showed that the alloy powders were mainly composed of spherical particles and a small amount of special-shaped particles. The particle size was mainly distributed between 22 μm and 58 μm. The surface of the alloy powder with the particle size of d≥42.16 μm had a dendritic structures while that with the particle size of d≤27.91 μm had a partially smooth microcrystalline structure, and that with the particle size of d=27.91—42.16 μm had both cellular and dendritic structures. The insoluble W element phase was observed between grain boundaries, which acted as a pin and inhibited the growth of grains. The powder consists of γ phase, Co7Mo6 phase and Co3W phase. The surface segregation was caused for Cr atoms diffused from the core of the powders to the surface. The micron powder was prepared under the condition of melt semi-diffusion resulted in different intergranular Mo and W content, due to the 30—50 μm enrichment zones of Co7Mo6 and Co3W phases in the microstructure of original cast bar. The performance } caused by segregation of high melting point elements could be solved for the preparation of CoCrMoW fine powders and its random distribution during rapid prototyping process.
Key words:  CoCrMoW alloy powder    plasma rotating electrode process    size distribution    microstructure
发布日期:  2022-05-24
ZTFLH:  TF122  
基金资助: 吉林省科技厅计划项目(20150204037SF)
通讯作者:  yuyan8788@126.com   
作者简介:  宋子威,2017年6月毕业于长春工业大学,获得学士学位。2017年9月至今于长春工业大学攻读硕士研究生,主要从事激光熔覆及3D打印研究。
于燕,长春工业大学教授、博士,主要研究方向为汽车材料强韧化,近年来主持的科技项目10余项,发表论文40余篇。
引用本文:    
宋子威, 于燕, 朱义新, 刘臻. PREP法制备CoCrMoW合金粉末的特性及显微组织[J]. 材料导报, 2022, 36(10): 19060192-5.
SONG Ziwei, YU Yan, ZHU Yixin, LIU Zhen. Properties and Microstructure of CoCrMoW Alloy Powder Prepared by PREP Method. Materials Reports, 2022, 36(10): 19060192-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060192  或          http://www.mater-rep.com/CN/Y2022/V36/I10/19060192
1 Takaichi A, Nakamoto T, Joko N, et al. Journal of the Mechanical Beha-vior of Biomedical Materials, 2013,21(3),67.
2 Xiang N, Xin X Z, Chen J, et al. Journal of Dentistry, 2012, 40(6), 453.
3 Walke W, Paszenda Z, Tyrlik J. Achievements of Materials and Manufacturing Engineering, 2006,18, 74.
4 Hedberg Y S, Qian B, Shen Z J, et al. Dental Materials, 2014, 30(5), 525.
5 Li S, Hassanin H, Attallah M M, et al. Acta Materialia, 2016,105(15), 75.
6 Zhang S G, Yang B C, Yang B, et al. Acta Metallurgica Sinica, 2002, 38(8), 888 (in Chinese).
张曙光, 杨必成, 杨博, 等.金属学报,2002, 38(8), 888.
7 Ouyang H W, Huang B Y, Chen X, et al. The Chinese Journal of Nonferrous Metals, 2005, 15(7), 1000 (in Chinese).
欧阳鸿武, 黄伯云, 陈欣, 等.中国有色金属学报,2005, 15(7), 1000.
8 Yao N N,Peng X H. Sichuan Nonferrous Metals, 2013, 12(4), 48 (in Chinese).
姚妮娜,彭雄厚.四川有色金属,2013, 12(4), 48.
9 Yu W Y, Xiao Z Y, Gao C F, et al. Materials Science and Engineering of Powder Metallurgy, 2017,22(1), 56 (in Chinese).
余伟泳, 肖志瑜, 高超峰, 等. 粉末冶金材料科学与工程,2017, 22(1), 56.
10 Zhang X W, Quintino L, Allen C, et al. Journal of Northern Jiaotong University, 1996, 20(4), 424 (in Chinese).
张祥武, 昆提诺 L, 艾伦 C, 等.北方交通大学学报, 1996, 20(4), 424.
11 Dai Y, Li L. Advanced Materials Industry, 2016(8), 57(in Chinese).
戴煜, 李礼.新材料产业, 2016(8), 57.
12 zbilen S. Powder Metallurgy, 1999, 42(1), 70.
13 Liu J, Xu N H, Yu J N, et al. Ningxia Engineering Technology, 2016,15(4), 340 (in Chinese).
刘军, 许宁辉, 于建宁, 等. 宁夏工程技术,2016, 15(4), 340
14 Liu N, Li Z, Yuan H, et al. Materials Engineering, 2010(S1), 307 (in Chinese).
刘娜, 李周, 袁华, 等. 材料工程, 2010(S1), 307.
15 Noort R V. Dental Materials, 2012, 28(1), 3.
16 Shen J, Ma X Z, Wang G, et al. Rare Metal Materials and Engineering, 2001, 30(4), 273.
沈军, 马学著, 王刚, 等. 稀有金属材料与工程, 2001, 30(4), 273.
17 Zhou B. Investigation on microstructure and wear resistance of medical Cobalt based alloy. Master's Thesis, Zhejiang University, China, 2005 (in Chinese).
周炳. 医用钴基合金组织结构和磨损性能的研究. 硕士学位论文, 浙江大学, 2005.
[1] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[2] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[3] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[4] 赵帆, 胡昊, 刘雅政, 张志豪, 谢建新. 基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制[J]. 材料导报, 2022, 36(1): 20100217-6.
[5] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[6] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[7] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[8] 徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
[9] 车波, 卢立伟, 吴木义, 康伟, 唐伦圆, 房大庆. 预时效对变形镁合金组织与力学性能的影响[J]. 材料导报, 2021, 35(21): 21249-21258.
[10] 杨海峰, 赵洪运, 许欣欣, 孙广达, 周利, 赵慧慧, 刘会杰. 静轴肩搅拌摩擦焊2A14-T4铝合金T形接头的组织和性能[J]. 材料导报, 2021, 35(20): 20045-20051.
[11] 朱奕瑶, 冯俊强, 张增耀, 杨哲宁, 张向鹏, 王红霞. 形变热处理对Mg-4Al-1Si-1Gd合金组织及性能的影响[J]. 材料导报, 2021, 35(20): 20149-20154.
[12] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[13] 韩善果, 杨永强, 罗子艺, 蔡得涛, 郑世达. 线能量对铝/钢双光束激光焊接接头组织及性能的影响[J]. 材料导报, 2021, 35(2): 2109-2114.
[14] 狄翀博, 王金华, 闫二虎, 王星粤, 陈运灿, 贾丽敏, 徐芬, 孙立贤. Nb-Ti-Co氢分离合金的显微组织和耐腐蚀性能[J]. 材料导报, 2021, 35(18): 18109-18115.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 选区激光熔化成型4Cr5MoSiV1钢的组织与性能优化[J]. 材料导报, 2021, 35(16): 16126-16132.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed