Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21110150-7    https://doi.org/10.11896/cldb.21110150
  金属与金属基复合材料 |
退火处理对CoxCrFeMnNi2-x高熵合金显微组织和耐蚀性的影响
王权1, 吴长军1,2, 徐雪薇1, 彭浩平1, 刘亚1, 苏旭平1,2
1 常州大学材料科学与工程学院,江苏省材料表面科学与技术重点实验室,江苏 常州 213164
2 常州大学光伏科学与工程江苏协同创新中心,江苏 常州 213164
Effect of Annealing on Microstructure and Corrosion Resistance of the CoxCrFeMnNi2-x High-entropy Alloys
WANG Quan1, WU Changjun1,2, XU Xuewei1, PENG Haoping1, LIU Ya1, SU Xuping1,2
1 Jiangsu Key Laboratory of Material Surface Science and Technology, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
2 Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
下载:  全 文 ( PDF ) ( 6698KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过电弧熔炼法制备了一系列fcc型CoxCrFeMnNi2-x(x=0.25~1.5)高熵合金,并于600~1 000 ℃真空退火120~360 h,进而研究了Co和Ni含量、退火温度及时间对合金显微组织和耐蚀性的影响。结果表明,这些铸态合金均由fcc单相组成。600~1 000 ℃退火后,除x=1.5的合金中会形成少量的hcp相外,其他合金没有相变。铸态CoxCrFeMnNi2-x合金主要由粗大的树枝晶组成,合金的耐蚀性随Co含量的增加而逐渐降低。600~1 000 ℃退火会明显改变合金的金相显微组织。600 ℃退火后,由于晶界迁移截断枝晶主干,合金组织得到了细化;同时,由于粗大的晶界增多,合金耐蚀性明显降低。800 ℃退火120 h后,合金中形成了曲折的等轴晶界,但晶内仍有明显的网状编织的亚晶;此时,合金的耐蚀性得到大幅提升。进一步延长退火时间或升高退火温度可使晶界变得平滑细小,晶内的编织网状亚晶逐渐消失,合金的耐蚀性也将进一步提升。这些结果将为fcc型高熵合金的成分设计及组织调控提供依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王权
吴长军
徐雪薇
彭浩平
刘亚
苏旭平
关键词:  退火处理  高熵合金  显微组织  枝晶  耐蚀性    
Abstract: Aseries of fcc-type CoxCrFeMnNi2-x (x=0.25—1.5) high-entropy alloys were prepared by arc melting method and were vacuum annealed at 600—1 000 ℃ for 120—360 h in this work. The influence of Co and Ni contents, annealing temperature and annealing time on microstructure and corrosion resistance of these alloys were investigated. The results show that all the investigated as-cast alloys are composed of single fcc phase. Except for Co1.5CrFeMnNi0.5 alloy, in which a small amount of hcp phase is formed, there is no phase transformation or precipitation in other alloys after 600—1 000 ℃ annealing. The as-cast CoxCrFeMnNi2-x alloys are mainly composed of coarse dendrites. Their corrosion resis-tance gradually decreases with the increase of Co content. Experimental results indicate that the metallographic microstructure of the CoxCrFeMnNi2-x alloys significantly change after annealing. The dendritic structure of these alloys becomes much finer after 600 ℃ annealing, because the trunks of the dendrites are truncated by grain boundary migration. The corrosion resistance of the alloys are significantly reduced due to the increase of coarse grain boundary. After annealing at 800 ℃ for 120 h, tortuous equiaxed grain boundaries are formed with corrosion resistance greatly improved, while the woven net-like subcrystals still exist in the equiaxed grains. Moreover, further prolonging annealing time or increasing annealing temperature can smoothen and refine the grain boundaries. The woven network sub-crystals in the crystal gradually disappear, and the corrosion resistance of the alloys is further improved. These results will provide a basis for designing and microstructure controlling of the fcc-type high-entropy alloys.
Key words:  annealing treatment    high entropy alloy    microstructure    dendrite    corrosion resistance
发布日期:  2022-06-09
ZTFLH:  TG113.12  
基金资助: 国家自然科学基金(51771035;51971039)
通讯作者:  wucj@cczu.edu.cn   
作者简介:  王权,2017年6月于徐州工程学院获得学士学位。现为常州大学材料科学与工程学院硕士研究生。在吴长军副教授的指导下进行研究。目前主要研究领域为高熵合金。
吴长军,常州大学材料科学与工程学院副教授、硕士研究生导师。2006年湘潭大学金属材料工程专业本科毕业,2011年湘潭大学材料学专业博士毕业。2015—2016年在韩国浦项科技大学进行博士后研究工作。目前主要从事高性能金属材料、高熵合金、合金相图及材料设计、材料表面处理等方面的研究工作。获国家发明专利授权20余项,发表论文80余篇, 包括Journal of Alloys and CompoundsTransactions of Nonferrous Metals Society of ChinaCALPHADVacuum等。
引用本文:    
王权, 吴长军, 徐雪薇, 彭浩平, 刘亚, 苏旭平. 退火处理对CoxCrFeMnNi2-x高熵合金显微组织和耐蚀性的影响[J]. 材料导报, 2022, 36(11): 21110150-7.
WANG Quan, WU Changjun, XU Xuewei, PENG Haoping, LIU Ya, SU Xuping. Effect of Annealing on Microstructure and Corrosion Resistance of the CoxCrFeMnNi2-x High-entropy Alloys. Materials Reports, 2022, 36(11): 21110150-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110150  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21110150
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
2 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
3 Li T, Jiao W, Miao J, et al. Materials Science and Engineering: A, 2021, 827, 142061.
4 Li T, Lu Y, Wang T, et al. Applied Physics Letters,2021,119(7),071905.
5 Yeh J W. Annales de Chimie-Science des Materiau, 2006, 31, 633.
6 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring: A, 2004, 375-377, 213.
7 Song H Q, Ma Q J, Zhang W, et al. Journal of Alloys and Compounds, 2021, 885, 160944.
8 Li H Y, Shao C W, Orhan O K, et al. Materialia,2022,21,101271.
9 Tao J C, Lu Y P. Materials Reports B:Research Papers, 2020, 34(4), 8096(in Chinese).
陶继闯, 卢一平. 材料导报:研究篇, 2020, 34(4), 8096.
10 Guo R, Pan J, Liu L. Materials Science and Engineering: A, 2022, 831, 142194.
11 Quiambao K F, McDonnell S J, Schreiber D K, et al. Acta Materialia, 2019, 164, 362.
12 Liu Q L, Liu Y Z, Wang Y Q, Powder Metallurgy Industry, 2017, 27(6), 64(in Chinese).
刘丘林, 刘允中, 王艳群. 粉末冶金工业, 2017, 27(6), 64.
13 Sun Y, Wu C J, Liu Y, et al. Materials Reports A:Review Papers, 2019, 33 (4), 1169(in Chinese).
孙娅, 吴长军, 刘亚, 等. 材料导报:综述篇, 2019, 33 (4), 1169.
14 Tian M Y, Wu C J, Liu Y, et al. Materials Reports A:Review Papers, 2020, 34 (9), 17067(in Chinese).
田梦云, 吴长军, 刘亚, 等. 材料导报:综述篇,2020,34(9),17067.
15 Strumza E,Hayun S.Journal of Alloys and Compounds,2021,856,158220.
16 Parakh A, Vaidya M, Kumar N, et al. Journal of Alloys and Compounds, 2021, 863, 158056.
17 Geng Y, Tan H, Cheng J, et al. Tribology International,2020,151,106444.
18 Bhattacharjee P P, Sathiaraj G D, Zaid M, et al. Journal of Alloys & Compounds, 2014, 587(7), 544.
19 Ding W, Liu N, Fan J, et al. Intermetallics, 2021, 129, 107027.
20 Li L, Lu J, Liu X, et al. Corrosion Science, 2021, 187, 109479.
21 Fereidouni M, Khorrami M S, Sohi M H. Surface & Coatings Technology, 2020, 402, 126331.
22 Shi Y Z, Mo J K, Zhang F Y, et al. Journal of Alloys and Compounds, 2020, 844, 156014.
23 Shi Y Z. Microstructures and corrosion-resistant properties of AlxCoCrFeNi high-entropy alloys. Ph.D. Thesis, Beijing University of Science and Technology, China, 2018(in Chinese).
石芸竹. AlxCoCrFeNi系高熵合金微观组织与耐蚀性能研究. 博士学位论文, 北京科技大学, 2018.
24 Guo F Q, Ren B. Special Casting & Nonferrous Alloys, 2019, 39(2), 202(in Chinese).
郭富强, 任波. 特种铸造及有色合金, 2019, 39(2), 202.
25 Ren B, Zhao R F, Liu Z X. Journal of Materials Protection, 2018, 51(12), 23(in Chinese).
任波, 赵瑞峰, 刘忠侠. 材料保护, 2018, 51(12), 23.
26 Hsu K M, Chen S H, Lin C S. Corrosion Science, 2021, 190, 109694.
27 Rodriguez A, Tylczak J H, Ziomek-Moroz M. ECS Transactions, 2017, 77(11), 741.
28 Ye Q, Feng K, Li Z, et al. Applied Surface Science, 2017, 396, 1420.
29 Luo H, Li Z, Mingers A M, et al. Corrosion Science, 2018, 134, 131.
30 Yang H O, Shang X L, Wang L L, et al. Acta Metallurgica Sinica, 2018, 54(6), 905(in Chinese).
杨海欧, 尚旭亮, 王理林, 等. 金属学报, 2018, 54(6), 905.
31 Kumar N, Fusco M, Komarasamy M, et al. Journal of Nuclear Materials, 2017, 495, 154.
32 Shi Y, Yang B, Xie X, et al. Corrosion Science, 2017, 119, 33.
[1] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[2] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[3] 陈小丽. 有机酸对新型铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 22010030-5.
[4] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[5] 曹召勋, 王军, 刘辰, 韩俊刚, 王荫洋, 钟亮, 王荣, 徐永东, 朱秀荣. 铸态Mg-2Y-0.8Mn-0.6Ca-0.5Zn镁合金热变形行为研究[J]. 材料导报, 2022, 36(Z1): 21120147-5.
[6] 谷米, 孙荣禄, 牛伟, 郝文俊, 左润燕. 硼铁粉含量对激光熔覆AlCoCrFeNi高熵合金涂层性能及形貌的影响[J]. 材料导报, 2022, 36(8): 20120230-5.
[7] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[8] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[9] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[10] 冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
[11] 宋子威, 于燕, 朱义新, 刘臻. PREP法制备CoCrMoW合金粉末的特性及显微组织[J]. 材料导报, 2022, 36(10): 19060192-5.
[12] 赵帆, 胡昊, 刘雅政, 张志豪, 谢建新. 基于23MnNiMoCr54钢复杂显微组织和表面脱碳演变规律的退火条件控制[J]. 材料导报, 2022, 36(1): 20100217-6.
[13] 侯雅青, 苏航, 张浩, 王畅畅. 金属材料多尺度高通量制备研究进展[J]. 材料导报, 2022, 36(1): 20080258-10.
[14] 金城焱, 杜兴蒿, 闫霏, 史传鑫, 盖业辉, 黄志青, 李万鹏, 武保林, 段国升, 王大鹏. 铜镍合金的强韧化行为及其微观机制的研究进展[J]. 材料导报, 2021, 35(z2): 372-375.
[15] 侯丽丽, 郭强, 要玉宏, 刘江南. B原子促进高熵合金FCC2相的形成机制[J]. 材料导报, 2021, 35(z2): 381-384.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed