Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 22030309-5    https://doi.org/10.11896/cldb.22030309
  高熵合金* |
谐波异质结构AlCoCrFeNi高熵合金的制备、组织演化与力学性能
修明清1,2, 李天昕1, 张国家1, 邹龙江3, 卢一平1,2
1 大连理工大学材料科学与工程学院,辽宁 大连 116024
2 辽宁省高熵合金材料工程研究中心,辽宁 大连 116024
3 大连理工大学材料科学与工程学院,材料测试分析中心,辽宁 大连 116024
Preparation, Microstructure Evolution and Mechanical Properties of AlCoCrFeNi High-entropy Alloys with Harmonic Heterostructure
XIU Mingqing1,2, LI Tianxin1, ZHANG Guojia1, ZOU Longjiang3, LU Yiping1,2
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
2 High Entropy Alloys Materials Engineering Research Center (Liaoning Province), Dalian 116024, Liaoning, China
3 Material Test and Analysis Center, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 4995KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 结合机械球磨与放电等离子烧结工艺制备了一种由外层细小晶粒与内层粗大晶粒构成的谐波异质结构AlCoCrFeNi高熵合金(High-entropy alloys, HEAs),测试了其准静态压缩力学性能,并对该合金的相结构与微观组织进行了表征。结果表明,球磨后烧结的AlCoCrFeNi高熵合金的屈服强度为1 686 MPa,压缩应变率为16.5%;未球磨直接进行烧结的AlCoCrFeNi高熵合金的屈服强度仅为1 371 MPa,压缩应变率为16.2%;铸态AlCoCrFeNi高熵合金的屈服强度为1 363 MPa,压缩应变率为18.7%。与其他两种制备方法相比,球磨和烧结工艺制备的AlCoCrFeNi高熵合金的综合力学性能最佳。烧结制备的AlCoCrFeNi高熵合金在相组成上与原始粉末一致,未发生变化,均由BCC+B2+FCC相构成;机械球磨细化了AlCoCrFeNi高熵合金粉末外层的晶粒,外层小晶粒与内层大晶粒形成谐波异质结构,这种特殊的结构在变形时起到背应力强化作用,显著提高了AlCoCrFeNi高熵合金的屈服强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
修明清
李天昕
张国家
邹龙江
卢一平
关键词:  高熵合金  谐波异质结构  力学性能  背应力强化    
Abstract: Akind of AlCoCrFeNi high-entropy alloy (HEA) with harmonic heterostructure composed of outer fine grains and inner coarse grains was prepared by mechanical ball milling and spark plasma sintering. The quasi-static compressive mechanical properties of the alloy were tes-ted, and the phase structure and microstructure of the alloy were characterized. The results show that the yield strength of sintered AlCoCrFeNi HEA after ball milling is 1 686 MPa and the compressive strain rate is 16.5%. The yield strength and the compressive strain rate of the sintered AlCoCrFeNi HEA without ball milling are only 1 371 MPa and 16.2%, respectively. The yield strength and the compressive strain rate of the as-cast AlCoCrFeNi HEA are 1 363 MPa and 18.7%, respectively. Compared with the other two methods, the AlCoCrFeNi HEA prepared by ball milling and sintering has the best comprehensive mechanical property. The phase composition of the AlCoCrFeNi HEA prepared by sintering is consistent with that of the original powder, both composed of BCC+B2+FCC phase. The outer grains of the AlCoCrFeNi HEA powder were refined by mechanical ball milling, and formed harmonic heterostructure with the inner large grains. This special structure plays a role of back stress strengthening, and significantly improves the yield strength of the AlCoCrFeNi HEA.
Key words:  high-entropy alloy    harmonic heterostructure    mechanical property    back stress strengthening
发布日期:  2022-07-26
ZTFLH:  TG135.1  
基金资助: 国家重点研发计划项目(2019YFA0209901;2018YFA0702901);辽宁省“兴辽英才计划”项目(XLYC1807047);宁波市“科技创新2025”重大专项(2019B10086)
通讯作者:  zoulong@dlut.edu.cn   
作者简介:  修明清,2019年6月毕业于山东理工大学,获得工学学士学位,现为大连理工大学在读硕士研究生,在卢一平教授和邹龙江教授的指导下进行研究。目前主要研究领域为高熵合金的成分和结构设计以及强韧化研究。
邹龙江,教授级高级工程师,大连理工大学材料测试分析中心主任、硕士研究生导师,1987年大连理工大学铸造专业本科毕业,2002年大连理工大学内燃机专业硕士毕业留校工作至今,发表文章60余篇,主要从事金属与非金属材料微纳结构形态研究、材料微纳结构研究与性能分析、工程材料的断裂机理研究与工程失效分析、功能复合材料制备与性能分析。
引用本文:    
修明清, 李天昕, 张国家, 邹龙江, 卢一平. 谐波异质结构AlCoCrFeNi高熵合金的制备、组织演化与力学性能[J]. 材料导报, 2022, 36(14): 22030309-5.
XIU Mingqing, LI Tianxin, ZHANG Guojia, ZOU Longjiang, LU Yiping. Preparation, Microstructure Evolution and Mechanical Properties of AlCoCrFeNi High-entropy Alloys with Harmonic Heterostructure. Materials Reports, 2022, 36(14): 22030309-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030309  或          http://www.mater-rep.com/CN/Y2022/V36/I14/22030309
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
2 Yao Y G, Huang Z N, Xie P F, et al. Science, 2018, 359, 1489.
3 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
4 Zhang W R, Liaw P K, Zhang Y. Science China Materials,2018,61,2.
5 Lu Y P, Dong Y, Jiang H, et al. Scripta Materialia, 2020, 187, 202.
6 Lu Y P, Dong Y, Guo S, et al. Scientific Reports, 2014, 4, 6200.
7 Lu Y P, Jiang H, Guo S, et al. Intermetallics, 2017, 91, 124.
8 Lu Y P, Gao X Z, Li J, et al. Acta Materialia, 2017, 124, 143.
9 Mohanty S, Maity T N, Mukhopadhyay S, et al. Materials Science & Engineering A, 2017, 679, 299.
10 Gao X Z, Lu Y P, Zhang B, et al. Acta Materialia, 2017, 141, 59.
11 Wu X L, Zhu Y T. Materials Research Letters, 2017, 5, 527.
12 Sawangrat C, Orlov D, Kato S, et al. Journal of Materials Science, 2014, 49, 6579.
13 Wang X, Li T, Gao Y F. Extreme Mechanics Letters, 2021, 48, 101413.
14 Shi P J, Ren W L. Nature Communications, 2019, 10, 489.
15 Ma X L, Huang C X, Moering J, et al. Acta Materialia, 2016, 116, 43.
16 Calcagnotto M, Adachi Y, Ponge D, et al. Acta Materialia,2011,59,658.
17 Park K, Nishiyama M, Nakada N, et al. Materials Science & Engineering A, 2014, 604, 135.
18 Han B Q, Huang J Y, Zhu Y T, et al. Acta Materialia,2006,54,3015.
19 John R, Karati A, Joseph J, et al. Journal of Alloys and Compounds, 2020, 835, 155424.
20 Xiong T. Investigation on the microstructure and properties of eutectic high entropy alloy AlCoCrFeNi2.1.Ph.D. Thesis, University of Science and Technology of China, China, 2020(in Chinese).
熊婷. 共晶高熵合金AlCoCrFeNi2.1微观结构和性能研究. 博士学位论文, 中国科学技术大学, 2020.
21 Vajpai S K, Ota M, Ameyama K, et al. Materials Research Letters, 2016, 4, 191.
22 Zhang Y Y, Bian T Y, Shen X T, et al. Journal of Alloys and Compounds, 2021, 868, 158711.
23 Zhou P F, Liu Y, Yu Y X, et al. Materials Reports B: Research Papers, 2016, 30(11), 95(in Chinese).
周鹏飞, 刘彧, 余永新, 等. 材料导报 B:研究篇,2016,30(11),95.
24 Wang Y P, Li B S, Ren M X, et al. Materials Science & Engineering A, 2008, 491, 154.
25 Wright S I, Nowell M M, Field D P. Microscopy and Microanalysis, 2011, 17, 316.
26 Yin M, Wang J, Xing J D. Journal of Chongqing University of Technology (Nature Science), 2022, 36(4), 138(in Chinese).
尹敏, 王建, 邢建东. 重庆理工大学学报 (自然科学), 2022, 36(4), 138.
27 Wu W, Zhang G C, Qi H J, et al. Journal of Chongqing University of Technology (Nature Science), 2020, 34(9), 167(in Chinese).
吴玮, 张广川, 戚浩杰, 等. 重庆理工大学学报(自然科学), 2020, 34(9), 167.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[9] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[10] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 谷米, 孙荣禄, 牛伟, 郝文俊, 左润燕. 硼铁粉含量对激光熔覆AlCoCrFeNi高熵合金涂层性能及形貌的影响[J]. 材料导报, 2022, 36(8): 20120230-5.
[13] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[14] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[15] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed