Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 22060260-22    https://doi.org/10.11896/cldb.22060260
  高熵合金* |
核用难熔高熵合金的研究进展
张平1, 蒋丽2, 杨金学1, 苏钲雄1, 王建强1, 施坦1, 卢晨阳1
1 西安交通大学核科学与技术学院,西安 710049
2 大连理工大学材料科学与工程学院,辽宁 大连 116024
Research Progress in Refractory High Entropy Alloys for Nuclear Applications
ZHANG Ping1, JIANG Li2, YANG Jinxue1, SU Zhengxiong1, WANG Jianqiang1, SHI Tan1, LU Chenyang1
1 Department of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 7791KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 开发具有优秀综合性能的核结构材料是先进反应堆研发的关键挑战之一。具有体心立方结构的难熔高熵合金以多种难熔金属为主要合金元素,在抗辐照、高温强度方面潜力较大,在核结构材料领域应用前景广阔。本文围绕难熔高熵合金的成分设计与制备、相组成和相稳定性、力学性能、抗腐蚀性能和抗辐照性能,对当前难熔高熵合金在核结构材料领域的研究进展进行了总结,并在此基础上对核用难熔高熵合金的下一步研究方向和潜在应用场景做出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张平
蒋丽
杨金学
苏钲雄
王建强
施坦
卢晨阳
关键词:  难熔高熵合金  核结构材料  成分设计  相稳定性  力学性能  抗腐蚀性能  抗辐照性能  抗辐照机制    
Abstract: Search of nuclear structural materials with excellent comprehensive properties is one of the significant challenges in advanced reactor development. Refractory high entropy alloys (RHEAs), which have body-centered cubic structures and contain multiple refractory elements as major alloying elements, have great advantages on irradiation tolerance and high-temperature strength, and thus are promising candidates for nuc-lear structural materials. In this review, the research progress of RHEAs for nuclear applications is summarized from aspects of alloy design and fabrication, phase structure and phase stability, mechanical property, corrosion resistance, as well as radiation resistance. The future research directions and potential nuclear application scenarios of RHEAs are also presented.
Key words:  refractory high entropy alloy    nuclear structural material    composition design    phase stability    mechanical property    corrosion resistance    radiation resistance    radiation resistance mechanism
发布日期:  2022-07-26
ZTFLH:  TL341  
基金资助: 国家重点研发计划项目(2019YFA0209900);国家自然科学基金(12075179;12105219);中国博士后科学基金(2021M702583);中核集团领创科研项目(J202107006-024)
通讯作者:  tan.shi0122@xjtu.edu.cn; chenylu@xjtu.edu.cn   
作者简介:  张平,2020年6月于大连理工大学获得工学学士学位。现为西安交通大学核科学与技术学院博士研究生,在卢晨阳教授的指导下进行研究。目前主要研究领域为难熔高熵合金辐照损伤。
施坦,西安交通大学核科学与技术学院助理教授。2013年、2019年分别于法国国立核科学应用学院、密西根大学获得硕士、博士学位。目前主要从事材料辐照损伤模拟计算、中子探测器应用和辐射防护与模拟相关方面的研究。发表SCI论文12篇,其中包括Nanocale, ACS applied materials & interfaces, Nuclear instruments and methods in physics research A, Acta Materialia等。
卢晨阳,西安交通大学核科学与技术学院教授、博士研究生导师,海外高层次人才引进计划获得者。2007年、2014年分别于东北大学获得学士、博士学位。目前主要从事新型高熵合金及纳米氧化物弥散强化钢的制备、表征及辐照性能相关方面的研究。发表SCI论文40余篇,包括4篇Nature Communications,8篇Acta Materialia,8篇Journal of Nuclear Materials及其他多篇具有领域影响力的相关论文,文章总引用3000余次,H因子27。
引用本文:    
张平, 蒋丽, 杨金学, 苏钲雄, 王建强, 施坦, 卢晨阳. 核用难熔高熵合金的研究进展[J]. 材料导报, 2022, 36(14): 22060260-22.
ZHANG Ping, JIANG Li, YANG Jinxue, SU Zhengxiong, WANG Jianqiang, SHI Tan, LU Chenyang. Research Progress in Refractory High Entropy Alloys for Nuclear Applications. Materials Reports, 2022, 36(14): 22060260-22.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060260  或          http://www.mater-rep.com/CN/Y2022/V36/I14/22060260
1 Zinkle S J, Busby J T. Materials Today, 2009, 12, 12.
2 Zinkle S J, Was G. Acta Materialia, 2013, 61, 735.
3 Knaster J, Moeslang A, Muroga T. Nature Physics, 2016, 12, 424.
4 Abram T. A Technology Roadmap for Generation-IV Nuclear Energy Systems, USDOE/GIF-002-00. United States Department of Energy, USA, 2002.
5 Moghaddam A O, Cabot A, Trofimov E A. International Journal of Refractory Metals and Hard Materials, 2021, 97, 105504.
6 Adamson R B, Coleman C E, Griffiths M. Journal of Nuclear Materials, 2019, 521, 167.
7 Lyu X F, Lu D G, LIu B. Atomic Energy Science and Technology, 2010, 44(3), 299(in Chinese).
吕雪峰, 陆道纲, 刘滨.原子能科学技术, 2010, 44(3), 299.
8 Maillard A, Touron H, Seran J, et al. In: Symposium on Effects of Radiation on Materials. Denver, 1992, pp. 16.
9 Garner F, Toloczko M, Sencer B. Journal of Nuclear Materials, 2000, 276, 123.
10 Fu S, Ma S, Ma S, et al. China Foundry Machinery & Technology, 2020, 55(4), 34(in Chinese).
付沙沙, 马胜强, 马胜超, 等.中国铸造装备与技术, 2020, 55(4), 34.
11 Sapundjiev D, Van Dyck S, Bogaerts W. Corrosion Science, 2006, 48, 577.
12 Klueh R. International Materials Reviews, 2005, 50, 287.
13 Sencer B, Kennedy J, Cole J, et al. Journal of Nuclear Materials, 2011, 414, 237.
14 Zheng C, Auger M A, Moody M P, et al. Journal of Nuclear Materials, 2017, 491, 162.
15 Klueh R, Maziasz P, Kim I, et al. Journal of Nuclear Materials, 2002, 307, 773.
16 Kimura A, Han W, Je H, et al. Plasma and Fusion Research, 2016, 11, 2505090.
17 Chen T, Aydogan E, Gigax J G, et al. Journal of Nuclear Materials, 2015, 467, 42.
18 Yvon P. Structural materials for generation IV nuclear reactors. Woodhead publishing, UK, 2016.
19 Zinkle S, Ghoniem N. Fusion Engineering and Design, 2000, 51, 55.
20 Pickering E J, Carruthers A W, Barron P J, et al. Entropy,2021,23,98.
21 Levenets A, Tikhonovsky M, Voyevodin V, et al. Problems of Atomic Science & Technology, 2021,132,3.
22 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
23 Li Z, Pradeep K G, Deng Y, et al. Nature, 2016, 534, 227.
24 Liu C, Lu W, Xia W, et al. Nature Communications, 2022, 13, 1.
25 Zhang Z, Armstrong D E, Grant P S. Progress in Materials Science, 2022, 123, 100807.
26 Shi T, Lei P H, Yan X, et al. Tungsten, 2021, 3, 197.
27 Huang T D, Wu S Y, Jiang H, et al. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1318.
28 Stepanov N D, Yurchenko N Y, Sokolovsky V S, et al. Materials Letters, 2015, 161, 136.
29 Zhang Y, Liu Y, Li Y, et al. Materials Letters, 2016, 174, 82.
30 Ikeuchi D, King D, Laws K, et al. Scripta Materialia, 2019, 158, 141.
31 Hosemann P, Frazer D, Fratoni M, et al. Scripta Materialia, 2018, 143, 181.
32 Möslang A, Diegele E, Klimiankou M, et al. Nuclear fusion, 2005, 45, 649.
33 Ehrlich K, Cierjacks W, Kelzenberg S, et al. In: Effects of Radiation on Materials: 17th International Symposium. ASTM International, 1996, pp. 1109.
34 Ayyagari A, Salloom R, Muskeri S, et al. Materialia, 2018, 4, 99.
35 Forrest R, Kopecky J, Sublet J C. Journal of Nuclear Science and Technology, 2002, 39, 96.
36 Forrest R, Tabasso A, Danani C, et al. UKAEA FUS, 2009, 552, 399.
37 King D, Cheung S, Humphry-Baker S A, et al. Acta Materialia, 2019, 166, 435.
38 Xiang C, Han E H, Zhang Z M, et al. Intermetallics, 2019, 104, 143.
39 Barron P, Carruthers A, Fellowes J, et al. Scripta Materialia, 2020, 176, 12.
40 Carruthers A, Li B, Rigby M, et al. Journal of Alloys and Compounds, 2021, 856, 157399.
41 Carruthers A, Shahmir H, Hardwick L, et al. Journal of Alloys and Compounds, 2021, 888, 161525.
42 El-Atwani O, Li N, Li M, et al. Science Advances, 2019, 5(3), eaav2002.
43 Waseem O A, Ryu H J. Scientific Reports, 2017, 7, 1.
44 Zhang W, Liaw P K, Zhang Y. Entropy, 2018, 20, 951.
45 Kareer A, Waite J, Li B, et al. Journal of Nuclear Materials, 2019, 526, 151744.
46 Sadeghilaridjani M, Ayyagari A, Muskeri S, et al. Journal of Nuclear Materials, 2020, 529, 151955.
47 Xian X, Zhong Z, Zhang B, et al. Materials & Design, 2017, 121, 229.
48 Zhang Y, Zhou Y J, Lin J P, et al. Advanced Engineering Materials, 2008, 10, 534.
49 Yang X, Zhang Y. Materials Chemistry and Physics, 2012, 132, 233.
50 Guo S, Ng C, Lu J, et al. Journal of Applied Physics, 2011, 109, 103505.
51 Chen R, Qin G, Zheng H, et al. Acta Materialia, 2018, 144, 129.
52 Ye Y, Wang Q, Lu J, et al. Scripta Materialia, 2015, 104, 53.
53 King D, Middleburgh S, McGregor A, et al. Acta Materialia, 2016, 104, 172.
54 Tan L, Ali K, Ghosh P S, et al. Journal of Alloys and Compounds, 2022, 164526.
55 Qiao L, Liu Y, Zhu J. Journal of Alloys and Compounds, 2021, 877, 160295.
56 Sparks T D, Kauwe S K, Parry M E, et al. Annual Review of Materials Research, 2020, 50, 27.
57 Kaufmann K, Vecchio K S. Acta Materialia, 2020, 198, 178.
58 Machaka R. Computational Materials Science, 2021, 188, 110244.
59 Qiao L, Lai Z, Liu Y, et al. Journal of Alloys and Compounds, 2021, 853, 156959.
60 Wen C, Zhang Y, Wang C, et al. Acta Materialia, 2019, 170, 109.
61 Li J, Xie B, Fang Q, et al. Journal of Materials Science & Technology, 2021, 68, 70.
62 Yan Y, Lu D, Wang K. Computational Materials Science, 2021, 199, 110723.
63 Miracle D, Majumdar B, Wertz K, et al. Scripta Materialia, 2017, 127, 195.
64 Yan X H, Ma J, Zhang Y. Science China Physics, Mechanics & Astronomy, 2019, 62, 1.
65 Yan X, Zhang Y. Scripta Materialia, 2020, 178, 329.
66 Dobbelstein H, Gurevich E L, George E P, et al. Additive Manufactu-ring, 2019, 25, 252.
67 Gwalani B, Soni V, Waseem O A, et al. Optics & Laser Technology, 2019, 113, 330.
68 Moorehead M, Bertsch K, Niezgoda M, et al. Materials & Design, 2020, 187, 108358.
69 Moorehead M, Nelaturu P, Elbakhshwan M, et al. Journal of Nuclear Materials, 2021, 547, 152782.
70 Senkov O, Wilks G, Scott J, et al. Intermetallics, 2011, 19, 698.
71 Senkov O, Scott J, Senkova S, et al. Journal of Alloys and Compounds, 2011, 509, 6043.
72 Senkov O, Senkova S, Woodward C. Acta Materialia, 2014, 68, 214.
73 Senkov O, Senkova S, Woodward C, et al. Acta Materialia, 2013, 61, 1545.
74 Lei Z, Liu X, Wu Y, et al. Nature, 2018, 563, 546.
75 Jia N, Li Y, Huang H, et al. Journal of Nuclear Materials, 2021, 550, 152937.
76 Lu Y, Huang H, Gao X, et al. Journal of Materials Science & Technology, 2019, 35, 369.
77 Xu Z Q, Ma Z L, Tan Y, et al. Scripta Materialia, 2022, 206, 114230.
78 Waseem O A, Lee J, Lee H M, et al. Materials Chemistry and Physics, 2018, 210, 87.
79 Liu Q, Wang G, Sui X, et al. Journal of Materials Science & Technology, 2019, 35, 2600.
80 Fu A, Guo W, Liu B, et al. Journal of Alloys and Compounds, 2020, 815, 152466.
81 Zhang H, Zhao Y, Huang S, et al. Materials, 2019, 12, 720.
82 Pan X, Qiu L. New Technology & New Process, 2019(12), 1(in Chinese).
潘晓龙, 邱龙时.新技术新工艺, 2019(12), 1.
83 Yang J, Yun D, Liu J. Materials Reports, 2022, 36(1), 102(in Chinese).
杨健乔, 恽迪, 刘俊凯.材料导报, 2022, 36(1), 102.
84 Sharma A. Coatings, 2021, 11, 372.
85 Zhang W, Tang R, Yang Z, et al. Journal of Nuclear Materials, 2018, 512, 15.
86 Zhang W, Tang R, Yang Z, et al. Surface and Coatings Technology, 2018, 347, 13.
87 Guan H, Chai L, Wang Y, et al. Applied Surface Science, 2021, 549, 149338.
88 Zhao S, Liu C, Yang J, et al. Surface and Coatings Technology, 2021, 417, 127228.
89 Alvi S, Jarzabek D M, Kohan M G, et al. ACS Applied Materials & Interfaces, 2020, 12, 21070.
90 Kim H, Nam S, Roh A, et al. International Journal of Refractory Metals and Hard Materials, 2019, 80, 286.
91 Wang Q, Han J, Liu Y, et al. Scripta Materialia, 2021, 190, 40.
92 Zhao B, Chen G, Lv S, et al. Journal of Alloys and Compounds, 2022, 896, 163129.
93 Soni V, Senkov O, Couzinie J P, et al. Materialia, 2020, 9, 100569.
94 Whitfield T E, Pickering E J, Owen L R, et al. Journal of Alloys and Compounds, 2021, 857, 157583.
95 Whitfield T E, Stone H J, Jones C N, et al. Entropy, 2021, 23, 80.
96 Senkov O N, Jensen J K, Pilchak A L, et al. Materials & Design, 2018, 139, 498.
97 Frey C, Silverstein R, Pollock T M. Acta Materialia, 2022, 117767.
98 Wang J, Tang Y, Li S, et al. Intermetallics, 2022, 142, 107436.
99 Li M, Zhang Z, Thind A S, et al. Acta Materialia, 2021, 213, 116919.
100 Huang H, Wu Y, He J, et al. Advanced Materials, 2017, 29, 1701678.
101 An Z, Mao S, Yang T, et al. Materials Horizons, 2021, 8, 948.
102 Whitfield T, Wise G, Stone H, et al. Applied Physics Letters, 2021, 119, 211901.
103 Chen Y, Xu Z, Wang M, et al. Materials Science and Engineering: A, 2020, 792, 139774.
104 Wu Y, Cai Y, Wang T, et al. Materials Letters, 2014, 130, 277.
105 Ryltsev R, Estemirova S K, Gaviko V, et al. Materialia, 2022,21, 101311.
106 Stepanov N, Yurchenko N Y, Zherebtsov S, et al. Materials Letters, 2018, 211, 87.
107 Schuh B, Völker B, Todt J, et al. Acta Materialia, 2018, 142, 201.
108 Chen S, Tong Y, Tseng K-K, et al. Scripta Materialia, 2019, 158, 50.
109 Yao J, Liu X, Gao N, et al. Intermetallics, 2018, 98, 79.
110 Guo N, Wang L, Luo L, et al. Materials & Design, 2015, 81, 87.
111 Behera M, Panigrahi A, Bönisch M, et al. Journal of Alloys and Compounds, 2022, 892, 162154.
112 Wu Y, Si J, Lin D, et al. Materials Science and Engineering: A, 2018, 724, 249.
113 Yurchenko N Y, Stepanov N D, Tikhonovsky M A, et al. Metals, 2016, 6, 298.
114 Senkov O, Zhang C, Pilchak A L, et al. Journal of Alloys and Compounds, 2018, 783,
115 Liu Q, Wang X, HUang Y, et al. Materials Reports, 2019, 33(S1), 392(in Chinese).
刘谦, 王昕阳, 黄燕滨, 等.材料导报, 2019, 33(S1), 392.
116 Miracle D. Nature Communications, 2019, 10, 1.
117 Chen S M, Ma Z J, Qiu S, et al. Acta Materialia, 2022, 225, 117582.
118 Tong Y, Bai L, Liang X, et al. Intermetallics, 2020, 126, 106928.
119 Troparevsky M C, Morris J R, Kent P R, et al. Physical Review X, 2015, 5, 011041.
120 Samolyuk G D, Osetsky Y, Stocks G M, et al. Physical Review Letters, 2021, 126, 025501.
121 Ikeda Y, Gubaev K, Neugebauer J, et al. npj Computational Materials, 2021, 7, 1.
122 Leong Z, Ramamurty U, Tan T L. Acta Materialia, 2021, 213, 116958.
123 Wei S, Kim S J, Kang J, et al. Nature Materials, 2020, 19, 1175.
124 Vlasák T, Čížek J, Melikhova O, et al. Metals, 2022, 12, 394.
125 Wang S, Wu D, She H, et al. Materials Science and Engineering: C, 2020, 113, 110959.
126 Lai W, Vogel F, Zhao X, et al. Materials Research Letters, 2022, 10, 133.
127 Wang L, Chen S, li B, et al. Materials Science and Engineering: A, 2021, 814, 141234.
128 Yan X, Liaw P K, Zhang Y. Journal of Materials Science & Technology, 2022, 110, 109.
129 Xu Z Q, Ma Z L, Wang M, et al. Materials Science and Engineering: A, 2019, 755, 318.
130 Hu Y M, Liu X D, Guo N N, et al. Rare Metals, 2019, 38, 840.
131 Senkov O N, Senkova S V, Miracle D B, et al. Materials Science and Engineering: A, 2013, 565, 51.
132 Sheikh S, Shafeie S, Hu Q, et al. Journal of Applied Physics, 2016, 120, 164902.
133 Yurchenko N Y, Stepanov N D, Zherebtsov S V, et al. Materials Science and Engineering: A, 2017, 704, 82.
134 Senkov O N, Couzinie J P, Rao S I, et al. Materialia, 2020, 9, 100627.
135 Senkov O N, Kuhr S J, Shank J M, et al. Materials Science and Engineering: A, 2021, 814, 141168.
136 Wang M, Ma Z L, Xu Z Q, et al. Scripta Materialia, 2021, 191, 131.
137 Senkov O N, Woodward C, Miracle D B. Jom, 2014, 66, 2030.
138 Chen B, Li S, Zong H, et al. Proceedings of the National Academy of Sciences, 2020, 117, 16199.
139 Gao X J, Wang L, Guo N N, et al. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105405.
140 Feng R, Feng B, Gao M C, et al. Advanced Materials, 2021, 33, 2102401.
141 Liu Y, Zhang Y, Zhang H, et al. Journal of Alloys and Compounds, 2017, 694, 869.
142 Jung Y, Lee K, Hong S J, et al. Journal of Alloys and Compounds, 2021, 886, 161187.
143 Zhang L, Fu H, Ge S, et al. Materials Characterization, 2018, 142, 443.
144 Ge S, Fu H, Zhang L, et al. Materials Science and Engineering: A, 2020, 784, 139275.
145 Wang H Y. The composition desigh and first principles calculation of monbta-based refractory high entropy alloys. Master’s Thesis, Shenyang Aerospace University, China, 2019(in Chinese).
王浩玉. MoNbTa基难熔高熵合金成分设计及第一性原理计算. 硕士学位论文,沈阳航空航天大学, 2019.
146 Hua N, Wang W, Wang Q, et al. Journal of Alloys and Compounds, 2021, 861, 157997.
147 Steingrimsson B, Fan X, Yang X, et al. npj Computational Materials, 2021, 7, 152.
148 Tong Y, Bai L, Liang X, et al. Journal of Alloys and Compounds, 2021, 873, 159740.
149 Lee C, Chou Y, Kim G, et al. Advanced Materials, 2020, 32, 2004029.
150 Senkov O N, Rao S, Chaput K J, et al. Acta Materialia, 2018, 151, 201.
151 Senkov O N, Gild J, Butler T M. Journal of Alloys and Compounds, 2021, 862, 158003.
152 Waseem O A, Ryu H J. Journal of Alloys and Compounds, 2020, 845, 155700.
153 Cao Y, Zhang W, Liu B, et al. Journal of Materials Science & Techno-logy, 2020, 66,
154 Senkov O, Pilchak A, Semiatin S. Metallurgical and Materials Transactions A, 2018, 49, 2876.
155 Moschetti M, Xu A, Schuh B, et al. JOM, 2020, 72, 130.
156 Wang F, Balbus G H, Xu S, et al. Science, 2020, 370, 95.
157 Lee C, Maresca F, Feng R, et al. Nature communications,2021,12,1.
158 Qi L, Chrzan D. Physical Review Letters, 2014, 112, 115503.
159 Senkov O, Miracle D. Scientific Reports, 2021, 11, 1.
160 Wang L, Fu C, Wu Y, et al. Materials Science and Engineering: A, 2019, 763, 138147.
161 Lee C, Song G, Gao M C, et al. Materials Science and Engineering: A, 2022, 831, 142293.
162 Wang Z, Wu H, Wu Y, et al. Materials Today, 2022,54,83.
163 Guo N N, Wang L, Luo L S, et al. Journal of Alloys and Compounds, 2016, 660, 197.
164 Chen B. Composition design of ZrTiHfVNb Series refractory high-entropy alloys with its properties. Master’s Thesis, Beijing Institute of Technology, China, 2018(in Chinese).
程博. ZrTiHfVNb系难熔高熵合金成分设计及性能研究. 硕士学位论文,北京理工大学, 2018.
165 Li T, Lu Y, Li Z, et al. Intermetallics, 2022, 146, 107586.
166 Chen S H, Zhang J S, Guan S, et al. Materials Science and Enginee-ring: A, 2022, 835, 142701.
167 Li T, Jiao W, Miao J, et al. Materials Science and Engineering: A, 2021, 827, 142061.
168 Li T, Miao J, Lu Y, et al. International Journal of Refractory Metals and Hard Materials, 2022, 103, 105762.
169 Lee K, Jung Y, Han J, et al. Materials, 2021, 14, 2085.
170 Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Materials Letters, 2015, 142, 153.
171 Wang J, Bai S, Tang Y, et al. Journal of Alloys and Compounds, 2021, 868, 159190.
172 Akmal M, Seong H W, Ryu H J. Journal of Materials Science & Technology, 2022, 109, 176.
173 Kim I H, Oh H S, Lee K S, et al. Scripta Materialia, 2021, 199, 113839.
174 Zhang B, Tang Y, Li S, et al. Entropy, 2021, 23, 1632.
175 Zhou Q, Sheikh S, Ou P, et al. Electrochemistry Communications, 2019, 98, 63.
176 Li M, Chen Q, Cui X, et al. Journal of Alloys and Compounds, 2021, 857, 158278.
177 Raza A, Abdulahad S, Kang B, et al. Applied Surface Science, 2019, 485, 368.
178 Li J, Yang X, Zhu R, et al. Metals, 2014, 4, 597.
179 Gong X, Xiang C, Auger T, et al. Scripta Materialia, 2021, 194, 113652.
180 Huang X, Gong X, Song M, et al. Journal of Nuclear Materials, 2020, 528, 151859.
181 Jayaraj J, Thinaharan C, Ningshen S, et al. Intermetallics, 2017, 89, 123.
182 Fu Y, Li J, Luo H, et al. Journal of Materials Science & Technology, 2021, 80, 217.
183 Qiu Y, Thomas S, Gibson M A, et al. npj Materials degradation, 2017, 1, 1.
184 Jia Y, Wang P, Zhang W, et al. Atomic Energy Science and Technology, 2021, 55(S2), 235(in Chinese).
贾玉振, 王朋飞, 张伟, 等.原子能科学技术, 2021, 55(S2), 235.
185 Shi Y, Yang B, Xie X, et al. Corrosion Science, 2017, 119, 33.
186 Xiang C, Zhang Z, Fu H, et al. Intermetallics, 2019, 114, 106599.
187 Han Z, Ren W, Yang J, et al. Journal of Alloys and Compounds, 2020, 816, 152583.
188 Yan D, Song K, Sun H, et al. Journal of Materials Engineering and Performance, 2020, 29, 399.
189 Zinkle S. Structural Materials for Generation IV Nuclear Reactors. Woodhead Publishing,2017.
190 Chang S, Tseng K K, Yang T Y, et al. Materials Letters, 2020, 272, 127832.
191 El-Atwani O, Alvarado A, Unal K, et al. Materials Today Energy, 2021, 19, 100599.
192 Patel D, Richardson M D, Jim B, et al. Journal of Nuclear Materials, 2020, 531, 152005.
193 Gandy A S, Jim B, Coe G, et al. Frontiers in Materials, 2019, 6, 146.
194 Nagase T, Anada S, Rack P D, et al. Intermetallics, 2012, 26, 122.
195 Li D, Jia N, Huang H, et al. Journal of Nuclear Materials, 2021, 552, 153023.
196 Cui H, Liu N, Luo L, et al. Fusion Engineering and design, 2021, 172, 112904.
197 Zhang Z, Han E H, Xiang C. Journal of Materials Science & Technology, 2021, 84, 230.
198 Parkin C, Moorehead M, Elbakhshwan M, et al. Acta Materialia, 2020, 198, 85.
199 Was G S. Fundamentals of radiation materials science: metals and alloys. Springer, USA, 2016.
200 Zhao S. Journal of Materials Science & Technology, 2020, 44, 133.
201 Shi T, Su Z, Li J, et al. Acta Materialia, 2022, 229,117806.
202 Byggmästar J, Nordlund K, Djurabekova F. Physical Review B, 2021, 104, 104101.
203 Lu C, Niu L, Chen N, et al. Nature Communications, 2016, 7, 1.
204 Zhang Y, Stocks G M, Jin K, et al. Nature Communications, 2015, 6, 1.
205 Lu C, Yang T, Niu L, et al. Journal of Nuclear Materials, 2018, 509, 237.
206 Jin K, Lu C, Dou Y, et al. Materials Reports A: Review Papers, 2020, 34(9), 17018(in Chinese).
靳柯, 卢晨阳, 豆艳坤, 等.材料导报:综述篇, 2020, 34(9), 17018.
207 Xu B, Fu S, Zhao S, et al. Materials Reports A: Review Papers, 2020, 34(9), 17031(in Chinese).
徐彪, 付上朝, 赵仕俊, 等.材料导报:综述篇, 2020, 34(9), 17031.
208 Owen L, Jones N. Scripta Materialia, 2020, 187, 428.
209 Zhang F, Tong Y, Kirkham M, et al. Journal of Alloys and Compounds, 2020, 847, 155970.
210 Song H, Tian F, Hu Q M, et al. Physical Review Materials, 2017, 1, 023404.
211 Lee C, Song G, Gao M C, et al. Acta Materialia, 2018, 160, 158.
212 Ding J, Wang Z. Acta Metallurgica Sinica, 2021, 57(4), 413(in Chinese).
丁俊, 王章洁.金属学报, 2021, 57(4), 413.
213 Yin B, Yoshida S, Tsuji N, et al. Nature Communications,2020,11,1.
214 Zhang R, Zhao S, Ding J, et al. Nature, 2020, 581, 283.
215 Chen X, Wang Q, Cheng Z, et al. Nature, 2021, 592, 712.
216 Wang J, Jiang P, Yuan F, et al. Nature Communications,2022,13,1.
217 Cao P. Accounts of Materials Research, 2021, 2, 71.
218 Xing B, Wang X, Bowman W J, et al. Scripta Materialia, 2022, 210, 114450.
219 Su Z, Shi T, Shen H, et al. Scripta Materialia, 2022, 212, 114547.
220 Li T X, Miao J W, Guo E Y, et al. Tungsten, 2021, 3, 181.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[9] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[10] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[13] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[14] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[15] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed