Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21030217-10    https://doi.org/10.11896/cldb.21030217
  金属与金属基复合材料 |
超声检测在金属3D打印中的应用研究进展
许万卫, 白雪*, 马健, 刘帅
齐鲁工业大学(山东省科学院)激光研究所,济南 250103
Research Progress of Ultrasonic Testing in Metal 3D Printing
XU Wanwei, BAI Xue*, MA Jian, LIU Shuai
Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
下载:  全 文 ( PDF ) ( 5432KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与传统等材或减材制造技术相比,金属3D打印作为一种增材制造技术,无需模具,可自由加工复杂结构零件,在汽车、核电、航空航天等领域具有广阔的应用前景。但是打印过程会经历快速反复熔凝及复杂的传热相变,导致打印成型件的质量无法得到保证。实际上,缺乏有效的质量监控手段是制约该技术推广应用的瓶颈。
在众多无损检测技术中,超声检测技术由于灵敏性高、穿透力强、材料适用范围广,在3D打印的质量监控方面展现出较大的潜力。然而,由于3D打印成型工艺的特殊性,其成型件冶金特征与传统锻、铸造件明显不同,具体表现为组织各向异性明显,易出现孔隙、未熔合、裂纹等缺陷,存在较大残余应力易导致翘曲变形等,给传统超声检测技术带来了极大挑战。同时其成型件具有明显的个性化特征,中空、薄壁等复杂结构可能会导致超声信号可达性差、检测盲区大等问题。另一方面,由于金属3D打印一次性成型的特点,打印过程的在线实时检测尤为重要。然而,3D打印成型腔内充满高温、粉尘、强光散射等各种极端干扰源,影响超声检测系统的稳定性,增加了检测难度。因此,有针对性地开展超声离线及在线检测工作已成为近年来的研究热点。
近几年,根据打印成型件冶金特征的超声检测及评价,学者发现了组织各向异性与超声传播特性的关联,但是对组织晶粒度的定量分析工作还较少;研究了人工植入缺陷的定位及尺寸评估方法,对自然形成的缺陷检测工作尚不足;已实现表面残余应力的超声表征,而对危险性可能更大的次表面残余应力的检测研究还较少。打印过程的超声在线检测研究大多还处于实验验证阶段,要实现工程应用,还需克服表面粗糙度大、成型腔内存在各种干扰源、基于在线检测信息的闭环工艺调控等难点。
本文阐述了金属3D打印过程质量监控的必要性,概述了3D打印常用的无损检测技术,重点对超声检测技术在3D打印中的应用现状进行了综述,主要包括组织、缺陷、残余应力等冶金特征的离线/在线检测研究进展及其挑战,并展望了其未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许万卫
白雪
马健
刘帅
关键词:  金属3D打印  冶金特征  激光超声  离线/在线超声检测    
Abstract: Compared with traditional formative or subtractive manufacturing technology, metal 3D printing, as an additive manufacturing technology, enables free-form fabrication of complex structural components, and has broad application prospects in the industrial fields of automobile, nuc-lear power, aerospace, etc. However, due to the rapid and repeated melting and solidification, and complex heat transfer and phase transition during the 3D-printing process, the quality of 3D-printed parts cannot be guaranteed. In fact, lack of effective quality monitoring methods is a technical bottleneck restricting the promotion and application of metal 3D printing technology.
Among many non-destructive testing technologies, the ultrasonic testing technology has shown great potential in the 3D printing quality monitoring and control due to its high sensitivity, strong penetrability and wide applicability for materials. However, because of the particularity of 3D printing forming process, the metallurgical characteristics of the 3D-printed parts are obviously different from those of traditional castings and for-gings. Specifically, the microstructure anisotropy is obvious, and defects such as pores, non-fusion, cracks and so on are easy to appear. The presence of large residual stress is easy to cause the deformation of curl distortion. This brings great challenges to the traditional ultrasonic testing technology. Meanwhile, 3D-printed parts have obvious personalized characteristics. Complex structures of hollow and thin wall may cause problems such as poor accessibility of ultrasonic signals and large detection blind areas. On the other hand, metal 3D printing, as a one-step forming technology, the on-line real-time detection of the forming process is particularly important. Nevertheless, the complex environment conditions in the 3D printing forming cavity, such as high temperature, dust and strong light scattering, affect the performance and stability of the ultrasonic inspection system and greatly increase the difficulty of inspection. Therefore, targeted research on ultrasonic offline and online detection has become a research hotspot in recent years.
Recently, with respect to the ultrasonic testing and evaluation of metallurgical characteristics of 3D-printed metal parts, researchers have found correlation between microstructure anisotropy and ultrasonic propagation characteristics, yet there is insufficient research about quantitative analysis of microstructure grain size. The localization and size evaluation of artificial implantable defects are mainly studied, but research on the detection of defects naturally formed in the 3D-printing process is still insufficient. Ultrasonic characterization of surface residual stress has been stu-died, but there are few research reports on ultrasonic inspection of subsurface residual stress which may be more dangerous. Most of the research work on online ultrasonic monitoring of printing process is still at experimental stage. For further engineering application, there are still research difficulties such as large surface roughness, complex environment in forming cavity, closed-loop process control based on online detection information, etc.
In this paper, the necessity of quality control of metal 3D printing process is described firstly. Secondly, nondestructive testing technologies commonly used in 3D printing are summarized. Then, this paper focuses on the application status of ultrasonic testing technology in metal 3D printing, including the research progress and challenges of offline/online testing of metallurgical characteristics such as microstructures, defects, and residual stresses. Finally, the application of ultrasonic detection technology in metal 3D printing is summarized and prospected.
Key words:  metal 3D printing    metallurgical characteristics    laser-ultrasonic    offline/online ultrasonic testing
收稿日期:  2022-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TH165+.4  
基金资助: 国家自然科学基金(51805304);山东省重大科技创新工程(2019JZZY010418);山东省自然科学基金(ZR2019PEE014);齐鲁工业大学(山东省科学院)科教产融合创新试点工程项目(国际合作)(2020KJC-GH12);山东省科学院青年基金项目(2020QN004); 山东重点研发计划(公益类)(2019GSF111058);济南市“高校20条”创新团队项目(2020GXRC004)
通讯作者:  *baix@sdlaser.cn   
作者简介:  许万卫,2019年6月毕业于东北电力大学,获得工学学士学位。现为齐鲁工业大学(山东省科学院)激光研究所硕士研究生,在白雪副研究员的指导下进行研究。目前主要研究领域为金属3D打印的激光超声检测。白雪,硕士研究生导师。2010年7月本科毕业于山东大学材料科学与工程专业,2017年3月在法国巴黎萨克雷大学获得博士学位。现就职于齐鲁工业大学(山东省科学院)激光研究所。长期从事超声无损检测技术、智能结构健康监测技术研究及大型数字控制无损检测技术及装备研制工作,目前主要从事金属增材制件组织、应力及缺陷的激光高频超声检测研究工作。在国内外SCI、EI检索学术期刊发表研究论文10余篇。
引用本文:    
许万卫, 白雪, 马健, 刘帅. 超声检测在金属3D打印中的应用研究进展[J]. 材料导报, 2022, 36(18): 21030217-10.
XU Wanwei, BAI Xue, MA Jian, LIU Shuai. Research Progress of Ultrasonic Testing in Metal 3D Printing. Materials Reports, 2022, 36(18): 21030217-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030217  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21030217
1 Lu B H, Li D C. Machine Building & Automation, 2013,42(4),1(in Chinese).
卢秉恒, 李涤尘. 机械制造与自动化, 2013, 42(4), 1.
2 Tian J, Huang Z H, Qi W J, et al. Materials Reports, 2017, 31(Z1), 90(in Chinese).
田杰,黄正华,戚文军,等. 材料导报, 2017, 31(Z1), 90.
3 Simonelli M, Tse Y Y, Tuck C. Materials Science and Engineering A, 2014, 616, 1.
4 ISO A. ISO/ASTM 52900. 2015 Additive Manufacturing-General Principles-Terminology, Switzerland, 2015, pp.1.
5 Everton S K, Hirsch M, Stravroulakis P, et al. Materials & Design, 2016, 95, 431.
6 Joamin G G, Santiago C, Stephan S, et al. Materials, 2018, 11(5), 840.
7 Casati R, Lemke J, Vedani M. Journal of Materials Science & Technology, 2016, 32(8),738.
8 Zhang Y, Wu L, Guo X, et al. Journal of Materials Engineering and Performance, 2018, 27(1), 1.
9 Yang Y Q, Wang D, Wu W H. Chinese Journal of Lasers, 2011, 38(6), 54(in Chinese).
杨永强, 王迪, 吴伟辉. 中国激光, 2011(6), 54.
10 Liu Y S, Han P L, Hu S F, et al. Aeronautical Manufacturing Technology, 2014, 454(10), 62(in Chinese).
刘业胜, 韩品连, 胡寿丰,等. 航空制造技术, 2014, 454(10), 62.
11 Huang Y, Leu M C, Mazumder J, et al. Journal of Manufacturing Science and Engineering, 2015, 137(1), 014001.
12 Wang H M, Zhang S Q, Wang X M. Chinese Journal of Lasers, 2009(12), 118(in Chinese).
王华明, 张述泉, 王向明. 中国激光, 2009(12), 118.
13 Jing R K, Li J Z, Zhou H L. Foreign Electronic Measurement Technology, 2012(7), 28(in Chinese).
敬人可, 李建增, 周海林. 国外电子测量技术, 2012(7), 28.
14 Zaeh M F, Branner G. Production Engineering, 2010, 4(1), 35.
15 Hoye N, Li H J, Cuiuri D, et al.In: 7th International Conference on Mechanical Stress Evaluation by Neutrons and Synchrotron Radiation. Sydney, Australia, 2014, pp.124.
16 Guo C, Ge W, Lin F. Journal of Materials Processing Technology, 2015, 217, 148.
17 Yang P H, Gao X X, Liang J, et al. Journal of Materials Engineering, 2017, 45(9), 13(in Chinese).
杨平华, 高祥熙, 梁菁, 等. 材料工程, 2017, 45(9), 13.
18 Easton M A, Qian M, Prasad A, et al. Current Opinion in Solid State & Materials Science, 2016, 20(1), 13.
19 Cao J, Liu F, Lin X, et al. Optics & Laser Technology, 2013, 45, 228.
20 Slotwinski J A. In: 10th International Conference on Barkhausen and Micro-Magnetics (ICBM). Baltimore, 2014, pp.1173.
21 Sames W J, List F A, Pannala S, et al. International Materials Reviews, 2016, 61(5), 1.
22 Zhang B, Li Y, Bai Q. Chinese Journal of Mechanical Engineering, 2017, 30(3), 515.
23 Aleshin N P, Grigor'Ev M V, Shchipakov N A, et al. Russian Journal of Nondestructive Testing, 2016, 52(9), 532.
24 Everton S K, Dickens P, Tuck C, et al. Materials Science & Technology, 2016.
25 Jia J Y, Liu F C, Liu F G, et al. Hot Working Technology, 2020, 49(18), 7,(in Chinese).
贾炅昱, 刘奋成, 刘丰刚, 等. 热加工工艺, 2020, 49(18), 7.
26 Edwards P, Ramulu M. Materials Science and Engineering A, 2014, 598, 327.
27 Bartlett J L, Heim F M, Murty Y V, et al. Additive Manufacturing, 2018, 24, 595.
28 Cheng L Y, Zhang S, Wei Q S, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(6), 1510,(in Chinese).
程灵钰,张升,魏青松,等.中国有色金属学报, 2014, 24(6), 1510.
29 Demir A G, Previtali B. The International Journal of Advanced Manufacturing Technology, 2017, 93(5), 2697.
30 Yadroitsev I, Thivillon L, Bertrand P, et al. Applied Surface Science, 2007, 254(4), 980.
31 Tang C L, Wen J Q, Zhang W X, et al. Journal of Aeronautical Mate-rials, 2019, 39(1), 42(in Chinese).
唐超兰, 温竟青, 张伟祥, 等. 航空材料学报, 2019, 39(1), 42.
32 Lopez A, Bacelar R, Pires I, et al. Additive Manufacturing, 2018, 21, 298.
33 Zhang J K, Chen B H, Zhang X. Rare Metal Materials and Engineering, 2018, 47(3), 920(in Chinese).
张纪奎,陈百汇,张向.稀有金属材料与工程,2018, 47(3), 920.
34 Grasso M, Colosimo B M. Measurement Science and Technology, 2017, 28(4), 44005.
35 Zhang J, Li S, Wei Q S, et al. Chinese Journal of Rare Metals, 2015, 39(11), 961(in Chinese).
张洁, 李帅, 魏青松,等. 稀有金属, 2015, 39(11), 961.
36 Li C, Liu J F, Fang X Y, et al. Additive Manufacturing,2017,17,157.
37 Rans C, Michielssen J, Walker M, et al. International Journal of Fatigue, 2018, 116, 344.
38 Yan Q, Lu C Q, Li Z Y. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2008(3),23(in Chinese).
严铿,芦春琪,黎志云.江苏科技大学学报(自然科学版),2008(3),23.
39 Eto S, Miura Y, Tani J, et al. Materials Science & Engineering A, 2014, 590, 433.
40 Yang Y Q, Song Y H, Wang D. Journal of Mechanical Engineering, 2014, 50(21), 140(in Chinese).
杨永强, 宋长辉, 王迪. 机械工程学报, 2014, 50(21), 140.
41 Gardan J. Additive manufaoturing handbook, CRC Press, Boca Raton, USA, 2017, pp.149.
42 Lévesque D, Bescond C, Lord M, et al.In: 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE). Minneapolis, 2016, pp.1706.
43 Cerniglia D, Scafidi M, Pantano A, et al. Ultrasonics, 2015, 62, 292.
44 Todorov E I, Boulware P, Gaah K. In: Conference on Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XII. Denver, 2018, pp.1059913.
45 Ziółkowski G, Chlebus E, Szymczyk P, et al. Archives of Civil and Mechanical Engineering, 2014, 14, 608.
46 Zanini F, Hermanek P, Rathore J, et al. In: International Symposium on Digital Industrial Radiology and Computed Tomography. Ghent, Belgium, 2015, pp.22.
47 Montinaro N, Cerniglia D, Pitarresi G. Frattura ed Integrità Strutturale, 2018, 12(43), 231.
48 Bamberg J, Dusel K, Satzger W. In: 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE). Boise, 2015, pp.156.
49 Zenzinger G, Bamberg J, Ladewig A, et al. In: 41st Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE). Boise, 2015, pp.164.
50 Heralić A, Christiansson A, Ottosson M, et al. Optics and Lasers in Engineering, 2010, 48(4), 478.
51 Wang T S, Wu Z J, Feng T F, et al. Journal of Mechanical Engineering, 2017, 53(19), 45(in Chinese).
王天圣, 吴志军, 冯平法, 等. 机械工程学报, 2017, 53(19), 45.
52 Thon A, Bélanger P. Ultrasonics, 2019, 95, 70.
53 Jafari-Shapoorabadi R, Konrad A, Sinclair A N. IEEE Transactions on Magnetics, 2001, 37(4), 2821.
54 Ramanaviciene A, Virzonis D, Vanagas G, et al. Analyst, 2010, 135(7), 1531.
55 Mura M L, Lamberti N A, Mauti B L, et al. Ultrasonics, 2017, 73, 130.
56 Kim Y Y, Kwon Y E. Ultrasonics, 2015, 62, 3.
57 Liu Z H, Chen Z H, Chen G, et al. Journal of Electronic Measurement and Instrumentation, 2016, 30(3),400(in Chinese).
刘志浩,陈振华,陈果,等.电子测量与仪器学报,2016,30(3),400.
58 Zhou Z G, Li Y, Zhou W B. Journal of Mechanical Engineering, 2016, 52(6), 1(in Chinese).
周正干, 李洋, 周文彬. 机械工程学报, 2016,52(6),1.
59 Li L, Ouyang C P. Journal of China University of Mining & Technology, 2017, 46(3), 485(in Chinese).
李力, 欧阳春平. 中国矿业大学学报, 2017, 46(3), 485.
60 Pieris D, Stratoudaki T, Javadi Y, et al. Materials & Design, 2019, 187, 108412.
61 Everton S, Dickens P, Tuck C, et al. JOM, 2018, 70(3), 378.
62 Santospirito S P, Łopatka R, Cerniglia D, et al. In: Conference on Frontiers in Ultrafast Optics-Biomedical, Scientific, and Industrial Applications XIII. San Francisco, 2013, pp.86111.
63 Wang Q, Tan H Y, Hu K. Applied Laser, 2019, 39(4), 666(in Chinese).
王谦, 谭华勇, 胡可. 应用激光, 2019, 39(4), 666.
64 Lindh-Ulmgren E, Ericsson M, Artymowicz D, et al. Materials Science Forum, 2004, 467, 1353.
65 Bai X, Zhao Y, Ma J, et al. Materials, 2019, 12(1), 102.
66 Zhang Y, Wang X, Yang Q, et al. Journal of Materials Science, 2018, 53(11), 8510.
67 Stanke F E, Kino G S. The Journal of the Acoustical Society of America, 1984, 75(3), 665.
68 Margetan F, Thompson R, Yalda-mooshabad I. Journal of Nondestructive Evaluation, 1994, 13(3), 111.
69 Bai X, Tie B, Schmitt J, et al. Ultrasonics, 2018, 87, 182.
70 Yang P H, Shi L J, Liang J, et al. Aeronautical Manufacturing Technology, 2017, 524(5), 38(in Chinese).
杨平华, 史丽军, 梁菁, 等. 航空制造技术, 2017, 524(5), 38.
71 Ruan X Q, Lin X, Huang C P, et al. Chinese Journal of Lasers, 2015, 42(1), 138(in Chinese).
阮雪茜, 林鑫, 黄春平, 等. 中国激光, 2015, 42(1), 138.
72 Bhatia A B. The Journal of the Acoustical Society of America, 1959, 31(8), 1140.
73 Rokhlin L L. Soviet Physics Acoustics, 1972, 18(1), 71.
74 Hirsekorn S. The Journal of the Acoustical Society of America, 1982, 72(3), 1021.
75 Li X, Song Y, Liu F, et al. NDT & E International, 2015, 72, 25.
76 Garcin T, Schmitt J H, Militzer M. Journal of Alloys and Compounds, 2016, 670, 329.
77 Bai X, Zhao Y, Ma J, et al. Materials Characterization, 2019, 155, 109800.
78 Han Y, Thompson R. Metallurgical and Materials Transactions A, 1997, 28(1), 91.
79 Ma Y, Hu X, Hu Z, et al. Materials, 2020, 13(10), 2404.
80 Shi Y W, Yang P H, Liang J, et al.In: Proceedings of the 19th World Conference of Non-destructive Testing. Munich, Germany,2016,pp.13.
81 Han L H, Gong S L, Suo H B, et al. Aeronautical Manufacturing Technology, 2016(8), 66(in Chinese).
韩立恒,巩水利,锁红波,等.航空制造技术, 2016(8), 66.
82 Li W T, Zhou Z G. Journal of Mechanical Engineering, 2020, 56(8), 141(in Chinese).
李文涛,周正干.机械工程学报, 2020, 56(8), 141.
83 Song Y, Zi X, Fu Y, et al. Measurement, 2018, 118, 105.
84 Chabot A, Laroche N, Carcreff E, et al. Journal of Intelligent Manufacturing, 2020, 31(5), 1191.
85 Davis G, Nagarajah R, Palanisamy S, et al. The International Journal of Advanced Manufacturing Technology, 2019, 102(5), 2571.
86 Cerniglia D, Scafidi M, Pantano A, et al. Laser, 2013, 6(150), 13.
87 Yuan J X, Qin X P, Zhang J P, et al. China Mechanical Engineering,2021, 32(1), 65(in Chinese).
袁久鑫,秦训鹏,张进朋,等.中国机械工程,2021, 32(1), 65.
88 Stratoudaki T, Javadi Y, Kerr W, et al.In: 57th Annual Conference of the British Institute of Non-destructive Testing, NDT 2018, UK, 2018, pp.174.
89 Klein M, Sears J. In: International Congress on Applications of Lasers & Electro-Optics, Laser Institute of America, USA, 2004, pp.1006.
90 Karabutov A, Devichensky A, Ivochkin A, et al. Ultrasonics, 2008, 48(6), 631.
91 Sanderson R, Shen Y. International Journal of Pressure Vessels and Piping, 2010, 87(12), 762.
92 Pei C, Wu W, Uesaka M, et al. International Journal of Applied Electromagnetics and Mechanics, 2014, 45(1), 109.
93 Pan Y D, Qian M L, Xu W J. Acta Acustica, 2004, 29(3), 254(in Chinese).
潘永东,钱梦騄,徐卫疆.声学学报, 2004, 29(3), 254.
94 Shi S, Yifei Y F, Ni N, et al. Japanese Journal of Applied Physics, 2008, 47(5), 3504.
95 Wang J, Feng Q. Laser Physics, 2015, 25(5), 56104.
96 Xu C G, Li H X, Wang J F, et al. Acta Acustica, 2017, 42(2), 195(in Chinese).
徐春广,李焕新,王俊峰,等.声学学报, 2017, 42(2), 195.
97 Zhan Y, Liu C, Zhang J, et al. Materials Science and Engineering A, 2019, 762, 138093.
98 Leuders S, Thoene M, Riemer A, et al. International Journal of Fatigue, 2013, 48, 300.
99 Rieder H, Dillhöfer A, Spies M, et al. In: 11th European Conference on Non-destructive Testing (ECNDT).Prague,Czech Republic,2014,pp.6.
100 Rieder H, Spies M, Bamberg J, et al. In: 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE). Minneapolis, USA, 2015, pp.1706.
101 Cerniglia D, Scafidi M, Pantano A, et al. Ultrasonics, 2015, 62, 292.
102 Millon C, Vanhoye A, Obaton A, et al. Welding in the World, 2018, 62(3), 653.
103 Pieris D, Patel R, Dryburgh P, et al. Insight, 2019, 61(3), 132.
104 胡宏伟, 何绪晖, 王向红, 等. 中国专利, CN108333219A, 2018.
105 丁辉, 李家奇, 晏井利. 中国专利, CN109164111A, 2019.
106 赵纪元, 王彪, 王琛玮, 等. 中国专利, CN209416978U, 2019.
107 王晓, 史亦韦, 梁菁, 等. 中国专利, CN106018288B, 2019.
108 白倩, 杜巍, 王义博, 等. 中国专利, CN107102061B, 2020.
No related articles found!
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed