Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21040006-9    https://doi.org/10.11896/cldb.21040006
  高分子与聚合物基复合材料 |
液晶材料在智能光学器件中的应用研究进展
张梦梦1, 刘梦2,3, 杨丽丽2, 葛邓腾3,*
1 北京卫星制造厂有限公司,北京 100094
2 东华大学材料科学与工程学院,纤维改性国家重点实验室,上海 201620
3 东华大学功能材料研究中心,上海 201620
Research Progress of Liquid Crystal Materials' Applications in Smart Optical Devices
ZHANG Mengmeng1, LIU Meng2,3, YANG Lili2, GE Dengteng3,*
1 Beijing Spacecrafts, China Academy of Space Technology, Beijing 100094, China
2 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
3 Institute of Functional Materials, Donghua University, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 6954KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 智能光学材料可通过外场调控光的折射、散射等特性来实现颜色、透光度、偏振等光学性能的改变,在信息、能源、国防等领域的智能光学器件中具有重要的应用价值。在众多构建智能光学器件的智能光学材料中,液晶材料由于具有双折射效应、多驱动方式、易产业化等特点,展示出独特的优势。例如,基于胆甾相液晶制备的反射式显示器无需背光源,能耗低、轻便柔性且能够用于户外显示;液晶还可以实现透光度的调控,可用作降低玻璃建筑能耗的智能窗,以及与太阳能电池等技术相结合作光切换窗口;液晶和取向、偏光技术相结合后可在外场下调控光的折射、偏振,可制成电控光学元件;胆甾相液晶在温度、湿度、气体或压力刺激下会改变颜色,可用于制备可视化传感器。本文总结了液晶材料在反射式显示器、智能窗、电控光学元件、可视化传感器四类智能光学器件中的应用进展,重点介绍了每种应用方向的工作机理,并分析目前研究的优势和不足;最后对未来液晶材料在智能光学器件中的应用发展趋势与挑战进行了展望。本文旨在为实现液晶材料更广泛的工程应用提供有益的借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张梦梦
刘梦
杨丽丽
葛邓腾
关键词:  液晶  智能光学器件  显示  智能窗  可视化传感器    
Abstract: Smart optical materials can adjust light refraction and scattering through external fields to modulate optical properties, such as color, transmittance, and polarization. They show important application potential as smart optical devices in the fields of information, energy and national defense. Among many smart optical materials, liquid crystals exhibit unique advantages due to their birefringence effect, multiple driving modes and easy industrialization. For example, reflective display devices based on cholesteric liquid crystal materials don't need backlight, and have low energy consumption, light weight and flexibility, which can also be used for outdoor display. Liquid crystal can also control light transmittance, and thus it can be used to prepare smart windows for reducing glass buildings' energy consumption, and serve as optical switchable window in conjunction with solar cells and other technologies. With the combination of liquid crystals, orientation and polarization technology, the refraction and polarization of light can be controlled through external fields, and electronically controlled optical elements can be prepared. Cholesteric liquid crystal can change color under temperature, humidity, gas or pressure stimulation, which is beneficial to preparing visual sensor. This article summarizes the application progress of liquid crystal materials in the four types of smart optical devices, reflective display, smart window, electronically controlled optical element and visual sensor. This review focus on the working mechanism of each application direction and discuss the advantages and disadvantages of current research. Finally, the prospects for the application development direction and challenges of liquid crystal materials in the field of smart optical devices are put forward. This article aims to provide a useful reference for the broader engineering applications of liquid crystals.
Key words:  liquid crystal    smart optical device    display    smart window    visual sensor
收稿日期:  2022-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TB381  
基金资助: 国家自然科学基金(51973033;11774049);中央高校基本科研业务费专项资金(2232021D-02)
通讯作者:  *dengteng@dhu.edu.cn   
作者简介:  张梦梦,2011年12月获得南开大学工程硕士学位,现为北京卫星制造厂有限公司的项目主管,主要从事应用于航天器的智能材料与器件的研发工作。葛邓腾,东华大学功能材料研究中心研究员,博士研究生导师。2005年、2007年和2011年分别获得哈尔滨工业大学学士、硕士和博士学位。2012年5月到2015年11月,在宾夕法尼亚大学材料系从事博士后研究工作,2015年12月加入东华大学。在PNASAdvanced MaterialsiScience等杂志上发表研究文章70余篇,获得中国发明专利8项、美国发明专利1项。主要从事动态仿生材料及器件的设计、制备及在力学、光学、热学和表界面等领域的应用。
引用本文:    
张梦梦, 刘梦, 杨丽丽, 葛邓腾. 液晶材料在智能光学器件中的应用研究进展[J]. 材料导报, 2022, 36(18): 21040006-9.
ZHANG Mengmeng, LIU Meng, YANG Lili, GE Dengteng. Research Progress of Liquid Crystal Materials' Applications in Smart Optical Devices. Materials Reports, 2022, 36(18): 21040006-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040006  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21040006
1 Li H, Sun X, Peng H. ChemPhysChem, 2015, 16, 3761.
2 Fudouzi H, Sawada T. Langmuir, 2006, 22(3), 1365.
3 Masichi Matsumoto, Yokohama, Wang D F(Translator). The latest technology of liquid crystal, Chemical Industry Press, China, 1991(in Chinese).
松本正一, 角田市良合, 王殿福(译)等. 液晶的最新技术, 化学工业出版社, 1991.
4 Hicks S E. Polymer-dispersed and polymer-stabilized liquid crystals. Ph.D. Thesis, Kent State University, USA, 2012.
5 Dierking I. Advanced Materials, 2000, 12(3), 167.
6 Mulder D J, Schenning A P H J, Bastiaansen C W M. Journal of Mate-rials Chemistry C, 2014, 2(33), 6695.
7 Liu Y J, Wu P C, Lee W. Molecular Crystals & Liquid Crystals, 2014, 596(1), 37.
8 Jones C. In:Handbook of visual display technology, Springer, Germany, 2012, pp. 1507.
9 Lu H B, Lyu G Q, Hu J T, et al. Advanced Display, 2008(10), 5(in Chinese).
陆红波, 吕国强, 胡俊涛,等. 现代显示, 2008(10), 5.
10 Shui L L, Zeng W J, Ju C, et al. Journal of South China Normal University(Natural Science Edition), 2018, 50(3), 1(in Chinese).
水玲玲, 曾伟杰, 鞠纯, 等. 华南师范大学学报(自然科学版), 2018, 50(3), 1.
11 Mulder D J, Schenning A P H J, Bastiaansen C W M. Journal of Mate-rials Chemistry C, 2014, 2(33), 6695.
12 Yang D K. Journal of Display Technology, 2006, 2(1), 32.
13 Ishihara S, Kobayashi Ukai Y. In: High quality liquid crystal displays and smart devices, The Institution of Engineering and Technology, England, 2019, pp. 167.
14 Coates D. Liquid Crystals, 2015, 42, 653.
15 Li C Y, Wang X, Liang X, et al. Crystals, 2019, 9(6), 282.
16 West J L, Novotny G R, Fisch M R, et al. Journal of Information Display, 2001, 2(4), 15.
17 Cairns D R. In:Flexible flat panel displays,Wiley,USA,2005,pp.163.
18 Shiyanovskaya I, Khan A, Green S, et al. SID Symposium Digest of Technical Papers, 2005, 36(1), 1556.
19 Chien L C, Doane J W, Yang D K.US patent, US6104448, 2000.
20 Xing H, Wang X, Xu J, et al. RSC Advances, 2013, 3(39), 17822.
21 Khan A Kent. US patent, US 8760415B2, 2014.
22 栾奕. 中国实用新型专利, CN208255600U, 2018.
23 Braganza C, Lightfoot M, Echeverri M, et al. SID Symposium Digest of Technical Papers, 2017, 48(1), 539.
24 Qin L, Gu W, Wei J, et al. Advanced Materials,2017,30(8),1704941.
25 Hemaida A, Ghosh A, Sundaram S, et al. Solar Energy,2020,195,185.
26 Yang D K. In: Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications. Wiley, 2012, pp. 505.
27 Sun H, Xie Z, Ju C, et al. Polymers, 2019, 11(4), 694.
28 Xia Y, Liang X, Jiang Y, et al. Advanced Energy Materials, 2019, 9(33), 1900720.1.
29 Zhou G Q, Yuan D, Liu Y D, et al. Acta Photonica Sinica, 2017, 46(3), 34(in Chinese).
周冠清, 袁冬, 刘延国, 等. 光子学报, 2017, 46(3), 34.
30 Khandelwal H, Schenning A P H J, Debije M G. Advanced Energy Materials, 2017, 7, 1602209.
31 Khandelwal H, Loonen R C G M, Hensen J L M, et al. Scientific Reports, 2015, 5, 11773.
32 Nemati H, Liu S, Zola R S, et al. Soft Matter, 2015, 11(6), 1208.
33 Ishihara S, Kobayashi, Ukai Y. In:High quality liquid crystal displays and smart devices, The Institution of Engineering and Technology, England, 2019, pp. 31.
34 陈明彻. 中国实用新型专利, CN201456997U, 2009.
35 Ryan P T, Jason Z, Andy W.US patent, US2019/0096340A1, 2019.
36 Trinh. European patent, EP3074253B1, 2013.
37 Louis B, Tigran G. Applied Optics, 2018, 57(18), 5072.
38 Huang S Y, Wu S T, Fuh Y G. Applied Physics Letters, 2006, 88(4), 041104.
39 Huang S Y, Wung T C, Fuh Y G, et al. Applied Physics B,2009,97,749.
40 Tzeng Y Y, Ke S W, Ting C L, et al. Optics Express,2008,16(6),3768.
41 Lin J D, Zhang Y S, Lee J Y, et al. Macromolecules,2020,53(3),913.
42 Sato S. Japanese Journal of Applied Physics, 1979, 18, 1678.
43 弗拉底米尔·普雷尼亚科夫, 卡伦·阿萨特里安, 阿尔门·佐哈拉拜亚恩, 等. 中国专利, CN108139590A, 2018.
44 Thibault S, Baril A, Glastian T. In:SPIE Optical Engineering and Applications. California, 2017, pp. 1037500.
45 Presniakov V, Galstian T, Asatryan K, et al. US patent, US8149377B2, 2009.
46 Wang L, Zhang C. Advanced Display, 2006(3), 6(in Chinese).
王丽, 张成. 现代显示, 2006(3), 6.
47 Hori Y, Asai K, Fukai M, IEEE Transactions on Electron Devices, 1979(26),1734.
48 Hu W, Srivastava A, Xu F, et al. Optics Express, 2012, 20(5), 5384.
49 Pavani K, Naydenova I, Raghavendra J, et al. Journal of Optics A: Pure and Applied Optics, 2009, 11(2), 024023.
50 Picot O T, Dai M, Billoti E, et al. RSC Advances,2013,3(41),18794.
51 Zhang P, Shi X, Schenning A P H J, et al. Advanced Materials Interfaces, 2019, 7(3), 1901878.
52 Han Y, Katherine P, Cees W M, et al. Journal of the American Chemical Society, 2010, 132(9), 2961.
53 Saha A, Tanaka Y, Han Y, et al. Chemical Communications, 2012, 48(38), 4579.
54 Wang H, Bisoyi H, Wang L, et al. Angewandte Chemie,2018,57,1621.
[1] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[2] 谢忠洲, 李钟昊, 逯浩, 王莹, 刘永生. 纳米复合结构对VO2相变特性的影响[J]. 材料导报, 2022, 36(8): 20080150-10.
[3] 易昌鸿, 胡钢, 祝柏林, 陈红祥, 吴隽, 顾华志. 淬火法制备热固化环氧树脂基聚合物分散液晶膜及其调光性能的优化[J]. 材料导报, 2022, 36(8): 21010229-8.
[4] 徐卓凡, 彭舒廷, 周鹤, 郭媛媛, 周国富, 徐雪珠. 含氟高分子涂料的合成及电润湿性能研究进展[J]. 材料导报, 2022, 36(16): 20110218-15.
[5] 逯海卿, 吴兴丽, 张鹏, 叶超超, 魏文庆. 基于液晶弹性体和液态金属的人造肌肉纤维的制备及分析[J]. 材料导报, 2022, 36(14): 21050105-4.
[6] 于佳酩, 王士鹏, 董娅慧, 王雨梦, 李玉, 程倩. 基于磁场-真空协同作用局部调制胆甾型纤维素[J]. 材料导报, 2022, 36(11): 20120091-6.
[7] 崔介东, 曹欣, 石丽芬, 仲召进, 高强. 液晶显示屏用玻璃结构与性能[J]. 材料导报, 2021, 35(z2): 107-109.
[8] 时钢印, 彭龙泉, 马莉. 基于专利视角的偏光片用三醋酸纤维素膜发展研究[J]. 材料导报, 2021, 35(z2): 678-683.
[9] 吴加雪, 张天栋, 张昌海, 冯宇, 迟庆国, 陈庆国. 高导热环氧树脂的研究进展[J]. 材料导报, 2021, 35(13): 13198-13204.
[10] 林拱立, 杨志文, 李万万. 磷化铟量子点的合成及其显示器件应用研究进展[J]. 材料导报, 2020, 34(23): 23057-23063.
[11] 周扬州, 钱磊, 章婷. 银纳米线及其透明导电膜的研究进展[J]. 材料导报, 2020, 34(21): 21081-21092.
[12] 李颖, 李成功, 后振中, 张亮, 杨庆浩, 刘心怡. 本征型导热液晶聚合物的制备及导热模型构建:一种提升聚合物基体热导率的方法[J]. 材料导报, 2020, 34(10): 10192-10196.
[13] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[14] 宋志成, 刘代明, 刘卫东, 王庆康. QLED研究及显示应用进展[J]. 《材料导报》期刊社, 2017, 31(19): 122-128.
[15] 常春蕊, 赵宏微, 刁加加, 安立宝. 基于碳纳米管薄膜构建场发射平面显示器的阴极结构[J]. 材料导报, 2017, 31(1): 56-63.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed