Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 21050105-4    https://doi.org/10.11896/cldb.21050105
  高分子与聚合物基复合材料 |
基于液晶弹性体和液态金属的人造肌肉纤维的制备及分析
逯海卿1, 吴兴丽2, 张鹏1, 叶超超1, 魏文庆1
1 潍坊学院机电与车辆工程学院,山东 潍坊 261061
2 沈阳工业大学机械工程学院,沈阳 110870
Preparation and Analysis of Artificial Muscle Fibers Based on Liquid Crystal Elastomers and Liquid Metals
LU Haiqing1, WU Xingli2, ZHANG Peng1, YE Chaochao1, WEI Wenqing1
1 College of Mechanical-Electronic and Vehicle Engineering, Weifang University, Weifang 261061,Shandong,China
2 College of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
下载:  全 文 ( PDF ) ( 3459KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作提出一种高效、低成本的新型人造肌肉纤维的制备方法。该方法将液态金属加热器完全嵌入到人造肌肉纤维中,使新型肌肉纤维同时具备液晶弹性体优异的致动性能和液态金属的类液态可变形性能,该结构可以避免肌肉纤维在发生较大变形时,由于加热器损伤而导致的肌肉纤维失效现象。利用红外摄像机和拉力试验机对新型人造肌肉纤维材料的驱动性能进行实验分析,包括其表面温度、收缩率和拉力受电流大小、加热时间和材料尺寸的变化所产生的影响等。结果表明,新型人造肌肉纤维材料具有较好的柔韧性、驱动性和高可变形性能,对液晶弹性体驱动机构的柔性设计和开发具有一定的指导意义,此方法可广泛应用于软体机器人、假肢及生物医疗设备的设计开发中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
逯海卿
吴兴丽
张鹏
叶超超
魏文庆
关键词:  人造肌肉  液晶弹性体  液态金属  电流    
Abstract: This work presents an efficient low-cost method for the preparation of new artificial muscle fiber material. The liquid metal heater is completely embedded into the artificial muscle fiber, so that the material possesses both the excellent actuation performance of liquid crystal elastomer and the liquid-like deformability of liquid metal. This structure can avoid the muscle fiber failure phenomenon caused by the heater damage when the muscle fiber deforms greatly. Using infrared camera and tensile testing machine, the driving performance of the new artificial muscle fiber material was analyzed, including its surface temperature, shrinkage and tensile force affected by the change of current, heating time and material size. The results show that the new artificial muscle fiber material has good flexibility, drive ability and high deformation resistance, which has certain guiding significance for the design and development of the flexible system of the liquid crystal elastomer drive mechanism. This method can be widely used in the design and development of soft robots, artificial limbs and biomedical equipment.
Key words:  artificial muscle    liquid crystal elastomers    liquid metals    current
发布日期:  2022-07-26
ZTFLH:  TH145.4  
基金资助: 山东省自然科学基金(ZR2018PEE012;ZR2020ME001)
通讯作者:  hitweiwenqing@126.com   
作者简介:  逯海卿,潍坊学院机电与车辆工程学院讲师。2015年3月毕业于沈阳工业大学,获机械工程专业博士学位。2018年3月至2019年6月在科罗拉多大学机械工程学院做访问学者。主要从事柔性电子技术、微机电系统、智能制造领域的研究。发表学术论文8篇。
魏文庆,潍坊学院潍坊学院机电与车辆工程学院副教授。2011年11月毕业于哈尔滨工业大学,获材料加工专业博士学位。从事陶瓷颗粒强化高温铌基合金、陶瓷颗粒改性锂电池固态电解质、智能低差压铸造装备及智能农业装备等方面的研究。发表学术论文10余篇。
引用本文:    
逯海卿, 吴兴丽, 张鹏, 叶超超, 魏文庆. 基于液晶弹性体和液态金属的人造肌肉纤维的制备及分析[J]. 材料导报, 2022, 36(14): 21050105-4.
LU Haiqing, WU Xingli, ZHANG Peng, YE Chaochao, WEI Wenqing. Preparation and Analysis of Artificial Muscle Fibers Based on Liquid Crystal Elastomers and Liquid Metals. Materials Reports, 2022, 36(14): 21050105-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050105  或          http://www.mater-rep.com/CN/Y2022/V36/I14/21050105
1 Chi Y D, Tang Y C, Liu H J, et al. Advanced Materials Technologies, 2020, 5(9), 2000370.
2 Yang Y, Wu Y X, Li C, et al. Advanced Intelligent Systems, 2020, 2(1), 1900077.
3 Xing Z G, Lin J, Zhao J W. Journal of Mechanical Engineering, DOI: 10.3901/JME.2021.09.001(in Chinese).
邢志广, 林俊, 赵建文. 机械工程学报: DOI: 10.3901/JME.2021.09.001.
4 Wang X, Guo R, Liu J. Advanced Materials Technologies, 2019, 4(2), 1800549.
5 Gao X, Cao C, Guo J, et al. Advanced Materials Technologies, 2019, 4(1), 1800378.
6 Majidi C. Advanced Materials Technologies, 2019, 4(2), 1800477.
7 Namsoo O, Yeong J P, Seongbok L, et al. Advanced Materials Technologies, 2019, 4(1), 1800414.
8 Wang G G, Zhang J Z, Liu S R, et al. Acta Polymerica Sinica, 2021, 52(2), 124(in Chinese).
王格格, 张居中, 刘水任, 等. 高分子学报, 2021, 52(2),124.
9 An S, Kang D J, Yarin A L. Nanoscale, 2018, 10(35), 16591.
10 Pei P Y, Shi Y, Yang G, et al. Journal of Applied Mechanics, 2018, 85(11), 111003.
11 Shen S, Lei J T, Zhang Y W. China Mechanical Engineering, 2021, 32(12), 1486(in Chinese).
沈双, 雷静桃, 张悦文. 中国机械工程, 2021, 32(12), 1486.
12 Zou Z, Zhu C P, Li Y, et al. Science Advances,2018,4(2),eaaq0508.
13 Lipomi D J, Vosgueritchian M, Tee B C K, et al. Nature Nanotechnol, 2011, 6, 788
14 Musallam S, Corneil B D, Greger B, et al. Science,2004,305,258.
15 Lee J, Guo Y H, Choi Y J, et al. Soft Matter, 2020, 16(11), 2695.
16 Davidson E C, Kotikian A, Li S C, et al. Advanced Materials, 2020, 32(1), 1905682.
17 Ahn C Y, Liang X D, Cai S Q. Advanced Materials Technologies, 2019, 4(7), 1900185.
18 Pourmodheji R, Qu S X, Yu H H. Journal of Applied Mechanics, 2018, 85(3), 031001.
19 Li T, Zou Z, Mao G, et al. Soft Robotics, 2019, 6(1), 133141.
20 Acome E,Mitchell S K,Morrissey T G, et al. Science,2018,359(6371),61.
21 Xu S, Yan Z, Jang K I, et al. Science, 2015, 347, 154.
22 Guin T, Settle M J, Kowalski B A, et al. Nature Communications, 2018, 9, 2531.
23 McBride M K, Martinez A M, Cox L, et al. Science Advances. 2018, 4(8), eaat4634.
24 Li K, Cai S Q. Journal of Applied Mechanics, 2016, 83(3), 165.
25 Hays M R, Wang H, Oates W S. Journal of Applied Mechanics, 2012, 79(2), 262.
26 Li Z W, Wang Y, Xiao J L. Theoretical & Applied Mechanics Letters, 2016, 6(1), 11.
27 Kang D, Lee S M, Li Z, et al. Advanced Optical Materials, 2014, 2 (4), 373.
28 White T J, Broer D J. Nature Materials, 2015, 14, 1087.
29 Devin J R, Xiao K, Chao Y, et al. Smart Materials and Structures, 2018, 27(12), 125011.
30 Shahsavan H, Yu L, Jákli A, et al. Soft Matter, 2017, 13(44), 8006.
31 Takashima Y, Hatanaka S, Otsubo M, et al. Nature Communications, 2012, 3, 1270
32 Ambulo C P,Burroughs J J,Boothby J M,et al.ACS Applied Materials & Interfaces, 2017, 9(42), 37332.
33 Zhan Y Y, Zhao J Q, Liu W D, et al. ACS Applied Materials & Interfaces, 2015, 7, 25522.
34 White T J, Tabiryan N V, Serak S V, et al. Soft Matter, 2008, 4, 1796.
35 Xia Y, Lee E, Hu H, et al. ACS Applied Materials & Interfaces, 2016, 8(19), 268.
36 An N, Li M E, Zhou J X. Smart Materials and Structures, 2016, 25(1), 015016.
37 Shahsavan H, Salili S M, Jákli A, et al. Advanced Materials, 2015, 27(43), 70291.
38 Yu Y Y, Nakano M, Ikeda T. Nature, 2003, 425, 145.
[1] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[2] 肖萍萍, 张国军, 孙忠月. 仿生固态纳米孔在生物传感中的应用进展[J]. 材料导报, 2022, 36(8): 20080071-11.
[3] 张光富, 谭伟石, 张赛文, 文兵. 几何结构对电流驱动纳米带内磁斯格明子移动特性的影响[J]. 材料导报, 2022, 36(12): 21010203-5.
[4] 尚明刚, 张云升, 何忠茂, 乔宏霞, 冯琼, 薛翠真, 韩照. 基于双应力的钢筋混凝土恒加试验腐蚀劣化规律研究[J]. 材料导报, 2022, 36(11): 21030289-8.
[5] 马康智, 李春, 倪立勇, 杨震晓, 曲栋, 文波, 李炜. 氧乙炔与等离子烧蚀试验的系统评价研究[J]. 材料导报, 2022, 36(11): 21020107-5.
[6] 王心桥, 张健, 苏彤, 赵兴, 郭永权. 先进液态金属电池熔盐电解质的设计[J]. 材料导报, 2022, 36(1): 20090223-7.
[7] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[8] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[9] 任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
[10] 穆伟娜, 王力霞, 王琼, 蔡艳荣, 常春, 包德才. 钴铁双金属氢氧化物纳米片的制备及其在高电流下的电催化全解水性能[J]. 材料导报, 2021, 35(24): 24026-24031.
[11] 耿继业, 蓝嘉昕, 刘通, 诸葛祥群, 罗志虹, 李义兵, 罗鲲. 3D打印聚氨酯微流道封装镓基液态金属柔性导线及其性能[J]. 材料导报, 2021, 35(20): 20040-20044.
[12] 杨帆, 丁建伟, 刘豪, 邱长军, 李胜. 液态GaIn合金对铜的腐蚀机理与防腐蚀技术研究[J]. 材料导报, 2021, 35(20): 20076-20080.
[13] 储洪强, 王婷婷, 张宇衡, 丁天云, 梁云超, 朱正宇. 氯盐-硫酸盐共存环境中杂散电流作用下提升砂浆中氯离子结合性能的研究[J]. 材料导报, 2021, 35(18): 18069-18075.
[14] 乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
[15] 王龙, 胡德安, 陈益平, 程东海, 江淑园. 铝/铜异种材料交变磁场辅助电弧熔钎焊接头组织和性能[J]. 材料导报, 2021, 35(12): 12119-12122.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed