Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21020107-5    https://doi.org/10.11896/cldb.21020107
  高分子与聚合物基复合材料 |
氧乙炔与等离子烧蚀试验的系统评价研究
马康智, 李春, 倪立勇, 杨震晓, 曲栋, 文波, 李炜
航天材料及工艺研究所,北京 100076
Research and Systematical Evaluation of Oxyacetylene and Plasma Ablation Tests
MA Kangzhi, LI Chun, NI Liyong, YANG Zhenxiao, QU Dong, WEN Bo, LI Wei
Institute of Aerospace Materials and Technology, Beijing 100076, China
下载:  全 文 ( PDF ) ( 3428KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对航天用复合材料烧蚀性能考核应用需求,本工作搭建了氧乙炔及等离子烧蚀热流密度测试平台,系统评价了影响烧蚀热流密度的主要因素,比较了两种烧蚀方式热流密度的差异,建立了烧蚀条件与热流密度的数学物理模型,提出了烧蚀热流密度的控制策略。结果表明:氧乙炔烧蚀及等离子烧蚀的热流密度均随烧蚀距离的缩短而增大,与烧蚀距离的倒数呈抛物线关系。距离较远时,氧乙炔烧蚀热流密度较大;距离较近时,等离子烧蚀热流密度超过氧乙炔。F4等离子喷枪烧蚀热流密度的变化规律与9M喷枪规律类似,但随着烧蚀距离、电流及辅气流量的变化更为显著。此外,辅气(H2)流量增加及电流增大均使等离子烧蚀热流密度增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马康智
李春
倪立勇
杨震晓
曲栋
文波
李炜
关键词:  氧乙炔烧蚀  等离子烧蚀  热流密度  距离  H2流量  电流    
Abstract: Aiming to evaluate the ablation performance of aerospace composite materials, a heat flux testing device for oxyacetylene and plasma ablation tests was established in this work. The main factors affecting the ablative heat flux were systematically evaluated, and the differences between oxyacetylene and plasma ablation tests were compared. Mathematical and physical models of heat flux as a function of ablation conditions were deducted, and the control strategy was proposed for oxyacetylene and plasma ablation tests. Results show that the heat flux for oxyacetylene and plasma ablation tests increases with the decrease of ablative distance, and shows a parabola relationship with the reciprocal of distance. The ablative heat flux of oxyacetylene is higher than that of plasma ablation at a longer distance, but becomes lower at a shorter distance. The heat flux for F4 plasma torch is similar to the 9M torch, but the change is more significant with the change of ablative distance, spraying current and auxiliary gas (H2) flow rate. Moreover, the increase of auxiliary gas flow rate and the spraying current also enhances the heat flux of plasma ablation.
Key words:  oxyacetylene ablation    plasma ablation    heat flux    distance    H2 flow rate    current
发布日期:  2022-06-09
ZTFLH:  TB302  
基金资助: 国家自然科学基金(51971013)
通讯作者:  lichun@buaa.edu.cn   
作者简介:  马康智,航天科技集团公司一院航天材料及工艺研究所高级工程师。2010年9月至2013年6月,在北京理工大学获得材料科学与工程专业工学硕士学位。以第一作者在国内外学术期刊上发表论文10余篇,申请国家发明专利8项,其中授权4项。从事耐烧蚀、耐腐蚀、抗冲击、耐磨等功能涂层材料及涂层制备工艺技术的研究工作,主持和参研多项装发“十三五”预研项目及航天一院科研基金项目等。
李春,航天科技集团公司一院航天材料及工艺研究所工程师。2011年9月至2020年8月,在北京航空航天大学获得材料科学与工程专业工学学士学位和博士学位。发表SCI论文10余篇,共申请国家发明专利3项,其中授权1项。长期从事热喷涂、热障涂层、以及超高温热结构材料等领域的研究工作,参与研究多项国家自然基金面上项目以及国防科技工业项目。
引用本文:    
马康智, 李春, 倪立勇, 杨震晓, 曲栋, 文波, 李炜. 氧乙炔与等离子烧蚀试验的系统评价研究[J]. 材料导报, 2022, 36(11): 21020107-5.
MA Kangzhi, LI Chun, NI Liyong, YANG Zhenxiao, QU Dong, WEN Bo, LI Wei. Research and Systematical Evaluation of Oxyacetylene and Plasma Ablation Tests. Materials Reports, 2022, 36(11): 21020107-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020107  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21020107
1 Zhu L J, Liao D J. Aerospace Materials and Technology, 1993(4), 12(in Chinese).
朱良杰, 廖东娟. 宇航材料工艺, 1993(4), 12.
2 Wang S X, Chen L Q, Liu Y Q. Journal of Solid Rocket Technology, 2007, 30(2), 170(in Chinese).
王书贤, 陈林泉, 刘勇琼. 固体火箭技术, 2007, 30(2), 170.
3 Yang Y Z, Yang J L, Fang D N. Applied Mathematics and Mechanics, 2008, 29(1), 47(in Chinese).
杨亚政, 杨嘉陵, 方岱宁. 应用数学和力学, 2008, 29(1), 47.
4 Tang S F, Deng J Y, Wang S J, et al. In: Proceedings of 2009 Sympo-sium of Space Materials Committee of Chinese Society for Space Sciences, Changsha, China, 2009, pp.173(in Chinese).
汤素芳, 邓景屹, 王石军, 等.中国空间科学学会空间材料专业委员会2009学术交流会, 长沙,2009, pp.173.
5 Yang S, Li J, Wang W B, et al. Journal of Solid Rocket Technology, 2009, 32(3), 284(in Chinese).
杨飒, 李江, 王文彬, 等. 固体火箭技术, 2009, 32(3), 284.
6 Wang Z Y, Wei G P. Engineering & Test, 2017, 57(1), 58(in Chinese).
王振亚,魏广平.工程与试验, 2017, 57(1), 58.
7 Yang H, Luo Y, Wu D, et al. Journal of Experiments in Fluid Mecha-nics, 2018, 32(4), 72(in Chinese).
杨鸿, 罗跃, 吴东, 等. 实验流体力学, 2018, 32(4), 72.
8 Zhang Y H, Chen L Z. Aerospace Materials and Technology, 2011(2), 124(in Chinese).
张友华, 陈连忠. 宇航材料工艺, 2011(2), 124.
9 Huang H J, Wu C K. In:Hypersonic Technology Conference. Wuxi, 2008, pp. 1(in Chinese).
黄河激, 吴承康. 高超声速科技学术会议. 无锡,2008, pp.1.
10 Zha B L, Shi Y A, Wang J J, et al. Journal of Aerospace Power, 2018, 33(4), 936(in Chinese).
查柏林, 石易昂, 王金金, 等. 航空动力学报, 2018, 33(4), 936.
11 Kim J W, Park H H, Kim S K, et al. Journal of the Korean Society of Propulsion Engineers, 2000, 4(3), 38.
12 Wang Y J, Li H J, Fu Q G, et al. Ceramics International, 2013, 39(1), 359.
13 Wang Z, Dai J, Zhao X L, et al. Aerospace Shanghai, 2020, 37(6),115(in Chinese).
王昭,戴佳,赵星霖,等.上海航天, 2020, 37(6),115.
14 Zhang Q, Zhen Z R, Mao K Z, et al. China Textile Leader, 2020(5), 77(in Chinese).
张倩,郑振荣,毛科铸,等. 纺织导报, 2020(5), 77.
15 Jing L, Wang D, Wang Y H, et al. Journal of Solid Rocket Technology, 2018,41(2), 245(in Chinese).
靳亮, 王德, 王耀辉, 等. 固体火箭技术, 2018,41(2), 245.
16 Li G D, Xiong X. Materials Science and Engineering of Powder Metallurgy, 2005,10(3), 155(in Chinese).
李国栋, 熊翔. 粉末冶金材料科学与工程,2005,10(3), 155.
17 Allcorn E, Robinson S, Tschoepe D, et al. In: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. San Diego, 2011, pp. 6050.
18 Wang J, Zha B, Zhang W, et al. Journal of Rubber Research, 2019, 22(2), 59.
19 Liu T, Niu Y, Li C,et al. Corrosion Science,2018,145,239.
20 Chu H T, Sheu S M, Chou J H. Journal of Propulsion and Power, 2011, 27(5), 1108.
21 Li S P, Li K Z, Guo L J, et al. Journal of Inorganic Materials, 2008, 23 (6), 1156(in Chinese).
李淑萍, 李克智, 郭领军,等. 无机材料学报, 2008, 23(6), 1156.
22 Yao D J, Li H J, Fu Q G, et al. Materials China, 2011, 30(11), 1(in Chinese).
姚栋嘉, 李贺军, 付前刚, 等. 中国材料进展, 2011, 30(11), 1.
23 Paul A, Binner J G P, Vaidhyanathan B, et al. Advances in Applied Ceramics, 2016, 115(3), 158.
[1] 肖萍萍, 张国军, 孙忠月. 仿生固态纳米孔在生物传感中的应用进展[J]. 材料导报, 2022, 36(8): 20080071-11.
[2] 尚明刚, 张云升, 何忠茂, 乔宏霞, 冯琼, 薛翠真, 韩照. 基于双应力的钢筋混凝土恒加试验腐蚀劣化规律研究[J]. 材料导报, 2022, 36(11): 21030289-8.
[3] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[4] 田永强, 苑清英, 付安庆, 何石磊, 周新义, 汪强, 杨晓龙, 陈浩明. Co1.5CrFeNi1.5 Mo0.5Ti0.5在不同pH值的3.5%NaCl酸性溶液中的钝化行为研究[J]. 材料导报, 2021, 35(z2): 399-403.
[5] 任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
[6] 穆伟娜, 王力霞, 王琼, 蔡艳荣, 常春, 包德才. 钴铁双金属氢氧化物纳米片的制备及其在高电流下的电催化全解水性能[J]. 材料导报, 2021, 35(24): 24026-24031.
[7] 储洪强, 王婷婷, 张宇衡, 丁天云, 梁云超, 朱正宇. 氯盐-硫酸盐共存环境中杂散电流作用下提升砂浆中氯离子结合性能的研究[J]. 材料导报, 2021, 35(18): 18069-18075.
[8] 乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
[9] 王龙, 胡德安, 陈益平, 程东海, 江淑园. 铝/铜异种材料交变磁场辅助电弧熔钎焊接头组织和性能[J]. 材料导报, 2021, 35(12): 12119-12122.
[10] 汪延明, 周智斌, 廖富达, 何鹏, 周波, 苗振林, 季辉. 氮化镓基金属基板蓝光LED变温变电流性能[J]. 材料导报, 2020, 34(Z2): 48-51.
[11] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[12] 尚明刚, 何忠茂, 乔宏霞, 冯琼, 苏富赟, 张璐. 基于恒电流密度的钢筋混凝土加速腐蚀试验研究[J]. 材料导报, 2020, 34(22): 22058-22064.
[13] 杨亚杰, 苏文勇, 衡成林, 王锋. 不同电极构型的砷烯和砷化锑扩展分子的电子输运性质[J]. 材料导报, 2020, 34(18): 18039-18043.
[14] 李越, 李玉龙, 李学文. Q235钢表面TIG焊堆焊铁基非晶涂层的组织与性能[J]. 材料导报, 2020, 34(18): 18135-18138.
[15] 徐祺, 王三反, 孙百超. 双膜三室同槽电解金属锰和微粒电解二氧化锰的控制因素[J]. 材料导报, 2020, 34(14): 14016-14022.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed