Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21030289-8    https://doi.org/10.11896/cldb.21030289
  无机非金属及其复合材料 |
基于双应力的钢筋混凝土恒加试验腐蚀劣化规律研究
尚明刚1, 张云升1, 何忠茂1,2, 乔宏霞1, 冯琼1, 薛翠真1, 韩照1
1 兰州理工大学土木工程学院,兰州 730050
2 宁波大学科学技术学院,浙江 宁波 315211
Study on Corrosion Deterioration of Reinforced Concrete Under Constant Acceleration Test Based on Double Stress
SHANG Minggang1, ZHANG Yunsheng1, HE Zhongmao1,2, QIAO Hongxia1, FENG Qiong1, XUE Cuizhen1, HAN Zhao1
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 College of Science & Technology Ningbo University, Ningbo 315211, Zhejiang, China
下载:  全 文 ( PDF ) ( 5502KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对钢筋混凝土耐久性试验周期长、数据离散性大的特点,选择高腐蚀性盐渍土作为导电介质,设计恒加速腐蚀试验。以一维和三维钢筋混凝土试件为研究对象,模拟了恒电流和腐蚀性离子的双应力加速劣化过程。在加速测试过程中采集了电化学阻抗谱(交流阻抗)数据、氯离子含量数据以及微观和宏观形貌数据,同时建立了基于对数正态分布的恒加试验腐蚀劣化统计模型。研究表明,石蜡防护层能够延长氯离子应力、恒电流应力和双应力作用下钢筋混凝土的平均寿命,延长后分别为249 h、268 h和115 h;恒电流应力最先作用于钢筋混凝土,贯穿裂缝的出现加速了氯离子应力的腐蚀作用,最后双应力叠加提高了钢筋混凝土腐蚀劣化速率;基于对数正态分布的恒加试验劣化模型能够实现石蜡防护效果的定量分析,氯离子、恒电流和双应力作用下的石蜡影响因子分别为0.41、0.35、0.19。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尚明刚
张云升
何忠茂
乔宏霞
冯琼
薛翠真
韩照
关键词:  石蜡隔离层  恒电流加速  极大似然估计  腐蚀影响因子    
Abstract: In view of the characteristics of long durability test period and large data dispersion of reinforced concrete, high corrosive saline soil was selec-ted as conductive medium to design constant accelerated corrosion test. In this work, the deterioration process of the one-dimensional and the three-dimensional reinforced concrete specimens under double stress of constant current and corrosive ions was simulated. Electrochemical impedance spectroscopy (AC impedance) data, chloride ion content data, and microscopic and macroscopic morphology data were collected during the accelerated test. Meanwhile, a statistical model of corrosion degradation in constant acceleration test based on lognormal distribution was established. The results have shown that the paraffin protective layer can increase the average life of reinforced concrete under chloride stress, constant current stress, and double stress by 249 h, 268 h and 115 h, respectively.The constant current stress firstly acts on the reinforced concrete, and the appearance of penetrating crack accelerates the corrosion effect of chloride ion stress. Finally, the double stress superposition increases the corrosion deterioration rate of reinforced concrete. The deterioration model of constant addition test based on lognormal distribution can realize the quantitative analysis of the protective effect of paraffin, and the influence factors of paraffin under chloride ion, constant current and double stress are 0.41, 0.35 and 0.19, respectively.
Key words:  paraffin isolation layer    constant current acceleration    maximum likelihood estimation    corrosion influence factor
发布日期:  2022-06-09
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U21A20150;51878153;52178216;52008196);甘肃省青年科技基金(20JR5RA440);甘肃省优秀研究生“创新之星”项目(2021CXZX-485);甘肃省绿色智慧公路关键技术研究及示范(21ZD3GA002);兰州理工大学红柳一流学科建设计划资助;公路混凝土桥梁耐久性修复关键技术研究;重庆市科学技术局重点项目(cstc2021jscx-jbgs0029)
通讯作者:  zhangyunsheng2011@163.com   
作者简介:  尚明刚,现为兰州理工大学土木工程学院博士研究生,从事钢筋混凝土耐久性、城市生活垃圾焚烧尾渣资源化利用的研究。
张云升,博士研究生导师,长江学者特聘教授。2004年毕业于东南大学,获工学博士学位;2003年1月—2004年1月在香港科技大学土木系进行访学;2010年任东南大学教授、博士生导师;2013年12月—2014年12月在美国加州伯克利大学土木工程与环境系进行访学。发表学术论文200余篇,其中SCI/EI收录140余篇;出版学术专著3部;获授权发明专利20余项;先后获国家科技进步二等奖2项、省部级一等奖1项、二等奖1项。现任江苏省现代混凝土耐久性评估与提升工程中心副主任、城市与建筑遗产保护教育部重点实验室副主任。担任国际期刊Journal of Research Update in Polymer ScienceFrontiers of Architectural Research编委、国内期刊《土木工程》副主编、国内期刊《材料导报》编委、亚洲混凝土学会(ACF)-建造和材料部主席、美国混凝土学会(ACI)委员、欧洲材料与结构联合会委员、中国硅酸盐学会固废分会理事、江苏省硅酸盐学会副理事长、新型道路材料国家地方联合工程实验室学术委员会委员、中国土木工程学会纤维混凝土专业委员会委员、中国土木工程学会混高强与高性能混凝土专业委会委员、中国建筑学会混凝土基本理论及其应用专业委员会委员。主要研究领域包括超高性能混凝土与强动载响应、严酷环境下结构混凝土耐久性、绿色低碳建筑材料。
引用本文:    
尚明刚, 张云升, 何忠茂, 乔宏霞, 冯琼, 薛翠真, 韩照. 基于双应力的钢筋混凝土恒加试验腐蚀劣化规律研究[J]. 材料导报, 2022, 36(11): 21030289-8.
SHANG Minggang, ZHANG Yunsheng, HE Zhongmao, QIAO Hongxia, FENG Qiong, XUE Cuizhen, HAN Zhao. Study on Corrosion Deterioration of Reinforced Concrete Under Constant Acceleration Test Based on Double Stress. Materials Reports, 2022, 36(11): 21030289-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030289  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21030289
1 Levenbach G J. IRE Transactions on Reliability and Quality Control, 1957,10(1),9.
2 Zhang Zhihua. Accelerated life test and its statistical analysis, Beijing University of Technology Press, China, 2002, pp.78(in Chinese).
张志华. 加速寿命试验及其统计分析, 北京工业大学出版社,2002, pp.78.
3 Yang L F, Chen C, Yu B. Journal of Silicate, 2019,47(11),1566(in Chinese).
杨绿峰,陈昌,余波. 硅酸盐学报,2019,47(11),1566.
4 Song H W, Lee C H, Ann K Y. Cement and Concrete Composites, 2008, 30(2), 113.
5 Pack S W, Jung M S, Song H W. Cement and Concrete Research, 2010, 40(2), 302.
6 Meira G R, Andrade C, Alonso C. Cement and Concrete Composites, 2010, 32(6), 427.
7 Liu W, Li Y Q, Tang L P. Construction and Building Materials, 2021,274, 121962.
8 Wang Jiandong, Xu Huifang, Zeng Fanxin, et al. Zhejiang Architecture,2010,27(12),57(in Chinese).
王建东,徐惠芳,曾凡信,等. 浙江建筑,2010,27(12),57.
9 Lu Zhenyong, Jin Weiliang, Wang Hailong, et al. Journal of Zhejiang University (Engineering Science),2009,43(6),1071(in Chinese).
卢振永,金伟良,王海龙,等. 浙江大学学报(工学版),2009,43(6),1071.
10 Liu Qidong, Liu Ronggui, Jiang Hui, et al. Concrete, 2013(11),50(in Chinese).
刘奇东,刘荣桂,姜慧,等. 混凝土, 2013(11),50.
11 Yuan Yingshu, Zhang Xinsen, Ji Yongsheng. Chinese Journal of Civil Engineering,2006(3),42(in Chinese).
袁迎曙,章鑫森,姬永生. 土木工程学报, 2006(3),42.
12 Zheng Fan, Shi Guiyun, Dong Biqin,et al. Journal of Silicate,2018,46(8),1081(in Chinese).
郑帆,史桂昀,董必钦,等. 硅酸盐学报, 2018,46(8),1081.
13 Shang Minggang, He Zhongmao, Qiao Hongxia, et al. Materials Reports B: Research Papers, 2020,34(11),22058(in Chinese).
尚明刚,何忠茂,乔宏霞,等. 材料导报:研究篇,2020,34(11),22058.
14 Abosrra L, Ashour A F, Youseffi M. Construction and Building Mate-rials, 2011,25(10), 3915.
15 Ma Y, Che Y, Gong J X.Construction and Building Materials, 2012, 29(29),548.
16 Tamer A, Khaled A. Journal of Materials in Civil Engineering,2003,15(1), 41.
17 Vuk A T,Stewart M G. Journal of Structural Engineering,2005,131(11),1681.
18 Azher A. European Physical Special Topics,2005,224(7),1325.
19 Gan Weizhong, Jin Weiliang, Gao Mingzan. Journal of Building Structures,2011,32(2),41(in Chinese).
干伟忠,金伟良,高明赞. 建筑结构学报, 2011,32(2),41.
20 Wang Xiaogang, Du Xiangbo, Yan Junyin, et al. Journal of Building Structures,2015,36(1),104(in Chinese).
王晓刚,杜相波,闫军印,等. 建筑结构学报, 2015, 36(1), 104.
21 Andrade C, Alonso C, Molina M J. Materials and Strictures, 1993,26(8),453.
22 Maaddawy T A E,Soudki K A. Journal of Materials in Civil Engineering, 2003,15(1), 41.
23 Care S,Raharinaivo A.Cement and Concrete Research,2007,37(12),1598.
24 Maaddawyt A E, Soudki K A. Cement and Concrete Composites, 2007,29(3), 168.
25 Zeng Yanhong, Gu Xianglin, Zhang Weiping, et al. Structural Engineer, 2009,25(1), 101(in Chinese).
曾严红,顾祥林,张伟平,等. 结构工程, 2009,25(1), 101.
26 Tang F J,Lin Z B,Chen G D, et al. Construction and Building Materials, 2014,70(2), 104.
27 Feng Qiong, Qiao Hongxia, Zhu Binrong, et al. Journal of Building Materials, 2018,21(4),568(in Chinese).
冯琼,乔宏霞,朱彬荣,等. 建筑材料学报, 2018,21(4),568.
28 Feng Weipeng. Research and application of accelerated rust corrosion method and rust efficiency of reinforcing steel with electric power. Master's Thesis, Shenzhen University,China,2015(in Chinese).
冯伟鹏. 钢筋通电加速锈蚀方法与锈蚀效率的研究及其应用. 硕士学位论文,深圳大学,2015.
29 Wang Fengping, Kang Wanli, Jing Hemin.Corrosion electrochemistry principle, method and application, Chemical Industry Press,China,2008, pp.125(in Chinese).
王风平,康万利,敬和民. 腐蚀电化学原理、方法及应用, 化学工业出版社,2008, pp.125.
30 Hong Dinghai. Corrosion and protection of steel bars in concrete, China Railway Publishing House,China,1998, pp.102(in Chinese).
洪定海. 混凝土中钢筋的腐蚀和保护, 中国铁道出版社,1998, pp.102.
[1] 尚明刚, 何忠茂, 乔宏霞, 冯琼, 苏富赟, 张璐. 基于恒电流密度的钢筋混凝土加速腐蚀试验研究[J]. 材料导报, 2020, 34(22): 22058-22064.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed