Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24026-24031    https://doi.org/10.11896/cldb.20080004
  无机非金属及其复合材料 |
钴铁双金属氢氧化物纳米片的制备及其在高电流下的电催化全解水性能
穆伟娜1, 王力霞1,2, 王琼1,2, 蔡艳荣1,2, 常春1,2, 包德才1
1 渤海大学化学与材料工程学院,锦州 121013
2 渤海大学海洋研究院,锦州 121013
Preparation of Cobalt Iron Bi-metallic Hydroxide Nano-sheet and Its Performance of Overall Water Splitting at High Current Densities
MU Weina1, WANG Lixia1,2, WANG Qiong1,2, CAI Yanrong1,2, CHANG Chun1,2, BAO Decai1
1 College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
2 Institute of Ocean Research, Bohai University, Jinzhou 121013, China
下载:  全 文 ( PDF ) ( 5304KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用一步水热法,通过在高传导泡沫镍(Nickel foam, NF)表面原位生长制备的钴铁双金属氢氧化物纳米片,被证明是一种在高电流下具有良好稳定性的高效双功能全解水电催化剂。在1 mol/L KOH电解液中,当电流密度为100 mA/cm2、200 mA/cm2、250 mA/cm2时,其析氧过电位分别为216 mV、269 mV和284 mV,塔菲尔斜率仅为49.79 mV/dec;当电流密度为10 mA/cm2、50 mA/cm2、100 mA/cm2和200 mA/cm2时,其析氢过电位分别为137 mV、221 mV、256 mV和297 mV,塔菲尔斜率为113.15 mV/dec。全水解只需要一个超低的电压(1.532 V),就可以获得200 mA/cm2的电流。在200 mA/cm2运行20 h后,电流密度仅下降8.86%;维持200 mA/cm2运行20 h,电压仅上浮2.12%。可见,所制备的钴铁双金属氢氧化物纳米片具有高效、稳定的电催化性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
穆伟娜
王力霞
王琼
蔡艳荣
常春
包德才
关键词:  钴铁双金属氢氧化物  纳米结构  高电流  催化剂  再生能源    
Abstract: Cobalt iron bi-metallic hydroxide nano-sheet is prepared in-situ on nickel foam (NF) through one step hydrothermal method. It is demonstrated to be a highly efficient bifunctional electrocatalyst for overall water splitting with good stability at high current densities. The synthetic electrocatalyst achieves low overpotential of 216 mV,269 mV and 284 mV at current density of 100 mA/cm2,200 mA/cm2,250 mA/cm2 for oxygen evolution reaction (OER) and a small Tafel slope of 49.79 mV/dec, and also achieves low overpotential of 137 mV,221 mV,256 mV and 297 mV at current density of 10 mA/cm2,50 mA/cm2,100 mA/cm2 and 200 mA/cm2 for hydrogen evolution reaction (HER) and a Tafel slope of 113.15 mV/dec, respectively, in 1 mol/L KOH. For the overall water splitting, it requires only a low cell voltage (1.532 V) to reach the current density of 200 mA/cm2. The electrocatalyst is exhibited only a minor chronoamperometric decay of 8.86% and only a chronopotentiometric sligh-tly rise of 2.12% at 200 mA/cm2 after 20 h. Therefore, the prepared cobalt iron bi-metallic hydroxide nano-sheet has efficient and stable electrocatalytic performance.
Key words:  cobalt iron bi-metallic hydroxide    nanostructure    high current densities    catalyst    renewable energy
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  O614.81  
基金资助: 辽宁省“兴辽英才计划”项目(XLYC1907173);国家自然科学基金(51508026);辽宁省自然科学基金(20180550030);辽宁省教育厅科学技术一般项目(LQ2019003;LQ2020014;LJ2020014);渤海大学海洋研究院开放基金(BDHYYJY2020014)
通讯作者:  changchun@bhu.edu.cn; baodecai@bhu.edu.cn   
作者简介:  穆伟娜,2006年7月毕业于辽宁工业大学,获得工学学士学位。目前在渤海大学化学与材料工程学院物理化学专业攻读硕士研究生,主要从事电催化分解水方面的研究。常春,渤海大学副教授,硕士研究生导师,2013年12月毕业于南开大学,毕业后到渤海大学化学与材料工程学院工作。研究工作主要包括光电催化在环境与能源的应用,生物质废弃物处理处置与资源化利用,在国内外学术期刊发表论文30余篇。包德才,博士,渤海大学教授,硕士研究生导师。1998—1999年,获“国家留学基金”资助,以访问学者身份,公派赴日本国东京农工大学进行合作研究。主要从事缓控释载体材料及高分子微胶囊膜负载金属催化剂的研究工作。在国内外学术期刊发表论文30余篇。
引用本文:    
穆伟娜, 王力霞, 王琼, 蔡艳荣, 常春, 包德才. 钴铁双金属氢氧化物纳米片的制备及其在高电流下的电催化全解水性能[J]. 材料导报, 2021, 35(24): 24026-24031.
MU Weina, WANG Lixia, WANG Qiong, CAI Yanrong, CHANG Chun, BAO Decai. Preparation of Cobalt Iron Bi-metallic Hydroxide Nano-sheet and Its Performance of Overall Water Splitting at High Current Densities. Materials Reports, 2021, 35(24): 24026-24031.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080004  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24026
1 Guo Y X, Shang C S, Li J, et al. Scientia Sinica Chimica, 2018, 8(48), 926(in Chinese).
郭亚肖, 商昌帅, 李敬, 等. 中国科学:化学, 2018, 8(48), 926.
2 Zhang G, Yang Y H, Liu F. Journal of Chongqing University of Techno-logy (Natural Science), 2018(12), 21(in Chinese).
张戈, 杨燕红, 刘峰. 重庆理工大学学报(自然科学),2018(12),21.
3 Hong G H, Wu W L, Wang C, et al. Chemical Journal of Chinese Universities, 2018(8), 1790(in Chinese).
洪国辉, 吴伟丽, 王晨, 等. 高等学校化学学报, 2018(8), 1790.
4 Zhou Q, Ren X R. Materials Reports,2019,33(22),3701(in Chinese).
周琦, 任向荣. 材料导报, 2019, 33(22), 3701.
5 Ren X R, Zhou Q. Chemical Journal of Chinese Universities, 2020(1), 162(in Chinese).
任向荣, 周琦. 高等学校化学学报, 2020(1), 162.
6 Peng W L, Yuan B. Materials Reports,2021,35(9),9174(in Chinese).
彭伟良, 袁斌. 材料导报, 2021,35(9),9174.
7 Wang W X, Lu Y, Zhao M L, et al. ACS Nano, 2019, 13(10), 12206.
8 Li J W, Lian R Q, Wang J Y, et al. Electrochim Acta, 2020, 331, 135395.
9 Du J, Li C, Wang X L, et al. ACS Applied Energy Materials, 2019, 2(3), 1977.
10 Xiao J, Zhou S K, Liu X, et al. Materials Reports, 2020,34(5), 5023(in Chinese).
肖江, 周书葵, 刘星, 等. 材料导报, 2020,34(5), 5023.
11 Liu P F, Yang S, Zhang B, et al. ACS Applied Materials & Interfaces, 2016, 8(50), 34474.
12 Zhou C M, Mu J S, Qi Y F, et al. International Journal of Hydrogen Energy, 2019, 44(16), 8156.
13 Senthil Raja D, Chuah X F, Lu S Y. Advanced Energy Materials, 2018, 8(23), 1801065.
14 Chang C, Zhang L, Hsu C W, et al. ACS Applied Materials & Interfaces, 2018, 10 (1), 417.
15 Wang H Y, Hsu Y Y, Chen R, et al. Advanced Energy Materials, 2015, 5(10), 1500091.
16 Wang Y, Zhang Y, Liu Z, et al. Angewandte Chemie International Edition, 2017, 56(21), 5867.
17 Zhang Q, Duan Z, Li M, et al. Chemical Communications, 2020, 56 (5), 794.
18 Li J C, Zhou Q W, Zhong C L, et al. ACS Catalysis, 2019, 9(5), 3878.
19 Zhao X, Wu K, Lyu H, et al. Analyst, 2019,144, 5284.
20 Li Z P, Zhao R X, Liu W, et al. Journal of Molecular Catalysis(China), 2019(1), 19(in Chinese).
李作鹏, 赵耀晓, 刘卫, 等. 分子催化, 2019(1), 19.
21 Gao Y, Wu Y H, Zhou L K, et al. The Chinese Journal of Process Engineering, 2019,19(1), 159(in Chinese).
高莹, 吴艺辉, 周连科, 等. 过程工程学报, 2019,19(1),159.
22 Qin J F, Yang M, Hou S, et al. Applied Surface Science, 2020, 502, 144172.
[1] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[2] 卢跃磊, 刘伟阳, 李玉阁. 难混溶材料的抗辐照性能研究[J]. 材料导报, 2021, 35(z2): 311-317.
[3] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[4] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[5] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[6] 刘子林, 林德海, 何发泉, 曹子雄, 王宝冬. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(Z1): 429-433.
[7] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[8] 王凯, 冯东, 赵文波. 尿素醇解法制备甘油碳酸酯催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 541-547.
[9] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[10] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[11] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[12] 芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
[13] 付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
[14] 贺文志, 邓承继, 丁军, 余超, 王杏, 祝洪喜. 多孔Mo2C/C复合陶瓷材料的制备及吸附性能[J]. 材料导报, 2021, 35(24): 24052-24056.
[15] 张晓君, 马梁, 孙迎辉. 基于电催化析氧反应的硫化物催化剂研究进展[J]. 材料导报, 2021, 35(23): 23040-23049.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed