Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23040-23049    https://doi.org/10.11896/cldb.20070182
  无机非金属及其复合材料 |
基于电催化析氧反应的硫化物催化剂研究进展
张晓君1, 马梁1,2, 孙迎辉2
1 东北电力大学化学工程学院,吉林 132012
2 苏州大学能源学院和能源与材料创新研究院,苏州 215006
Advances in Sulfide-based Electrocatalysts for Oxygen Evolution Reaction
ZHANG Xiaojun1, MA Liang1,2, SUN Yinghui2
1 College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
2 College of Energy & Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China
下载:  全 文 ( PDF ) ( 17412KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢能作为一种可燃烧的新型能源,凭借其清洁无污染等优点,被认为是人类从根本上解决能源与环境等全球性问题的理想替代能源。电解水是生产高纯度氢气的重要方法之一,也是现代清洁能源技术的重要组成部分。随着实际需求的不断增长,如何利用高效低耗的电催化剂来提升反应速率,已经成为当前新能源领域的研究重点之一。
电解水反应由阴极析氢反应(HER)和阳极析氧反应(OER)两个半反应组成,其中HER反应相对容易进行;而相比于HER反应,OER反应动力学缓慢, 是影响电解水效率的主要原因。为了提高电解水制氢的能量转化效率,高效OER电催化剂成为研究电解水制氢技术的关键因素。
过渡金属催化剂由于其特殊的d轨道结构和在地球上丰富的储备量成为OER催化剂研究领域的热点,但是目前存在的主要问题是,与贵金属催化剂相比,过渡金属催化剂的催化活性较差。因此,发展一些高催化活性和高效稳定的电催化剂,成为该领域研究关注的重点。在过去的十余年间,硫化物、硒化物、磷化物和硼化物等非贵金属基OER电催化剂被大量研究并取得了长足的发展。在这些催化剂中,硫化物型电催化剂不仅具有成本优势,而且在析氧过电位、耐久性等方面正在接近甚至超越RuO2和IrO2等贵金属催化剂,颇具应用潜力。
本文主要介绍了电解水析氧反应在不同电解质中的反应机理,从硫化物型OER电催化剂的物理化学性质入手,证实了硫化物型OER电催化剂在析氧反应中具有独特的优势,最后综述了有关硫化物型OER电催化剂在改进策略等方面的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓君
马梁
孙迎辉
关键词:  电解水  析氧反应  电催化剂  硫化物    
Abstract: Hydrogen energy is considered as an ideal alternative energy for mankind to fundamentally solve global problems of energy and environment due to its advantages, such as clean and pollution-free properties. Electrochemical water splitting is an important method to produce high purity hydrogen. With the increasing of actual demand, the development of highly efficient and low-cost electrocatalysts has attracted significant attention in the field of green energy.
Electrochemical water splitting is composed of two half reactions: cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). Compared with HER, OER reaction kinetics is slow, which is considered as the bottleneck in water splitting. In order to improve the efficiency of hydrogen production, the development of efficient OER electrocatalysts is imperative but still challenging.
Electrocatalysts based on transition metal have been extensively investigated as OER catalysts over the past years due to the special d-orbit structure and abundant reserves. However, the electrocatalytic efficiency of transition-metal-based electrocatalysts is still low compared with noble-metal-based catalysts. Therefore, the development of some electrocatalysts with high catalytic activity, high efficiency and stability has become the focus of people's research. Meanwhile, non-noble-metal-based OER electrocatalysts such as sulfide, selenide, phosphide and boride have been extensively further developed and with great success. Among them, sulfide electrocatalysts have not only cost advantages, but also are approaching or even surpassing RuO2 and IrO2 noble metal catalysts in terms of oxygen evolution overpotential and durability, and are sho-wing great potential application.
This paper introduces the reaction mechanism of electrolytic water oxygen evolution reaction in different electrolytes, further discussing the unique physical and chemical properties of sulfide OER electrocatalysts. It has been proved that the sulfide OER electrocatalysts have unique advantages in oxygen evolution reaction. Finally, the progress of research on improvement strategies of sulfide OER catalysts is reviewed and discussed.
Key words:  electrochemical water splitting    oxygen evolution reaction (OER)    electrocatalysts    sulfides
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  O643.36  
基金资助: 国家自然科学基金(31470787);江苏省碳基功能材料与器件重点实验室开放课题(KJS1807)
通讯作者:  yinghuisun@suda.edu.cn   
作者简介:  张晓君,东北电力大学高级实验师、硕士研究生导师。2014年在吉林大学物理化学专业取得博士学位,主要研究功能材料的制备及应用。以第一作者的身份发表论文十余篇,授权发明专利两项。
孙迎辉,2000年毕业于吉林大学化学学院,2005年毕业于吉林大学化学学院超分子结构与材料国家重点实验室,获博士学位。2006—2009年在德国明斯特大学物理系&纳米技术中心从事博士后研究,合作导师Luisa De Cola 教授。2009—2012年,在新加坡南洋理工大学材料工程与科学学院从事博士后研究,合作导师陈晓东教授。2012年9月加入苏州大学能源学院,任特聘副教授。主要研究方向是功能纳米材料设计与制备及其在能源转化中的应用。
引用本文:    
张晓君, 马梁, 孙迎辉. 基于电催化析氧反应的硫化物催化剂研究进展[J]. 材料导报, 2021, 35(23): 23040-23049.
ZHANG Xiaojun, MA Liang, SUN Yinghui. Advances in Sulfide-based Electrocatalysts for Oxygen Evolution Reaction. Materials Reports, 2021, 35(23): 23040-23049.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070182  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23040
1 Nie L, Mei D H, Datye A K, et al. Science, 2017, 358(6369), 1419.
2 Li W, Liu J, Zhao D Y, et al. Nature Reviews Materials, 2016,1(6), 16023.
3 Chhowalla M, Shin H S, Li J, et al. Nature Chemistry, 2013, 5(4), 263.
4 Chu S, Cui Y, Liu N. Nature Materials, 2017, 16, 16.
5 Jacobson M Z, Colella W G, Golden D M. Science, 2005, 5730, 1901.
6 Zheng X, Peng L, Li L, et al. Chemical Science, 2018, 9, 1822.
7 Peng L, Nie Y, Zhang L, et al. ChemCatChem, 2017, 9, 1588.
8 Peng L, Shen J, Zhang L, et al. Journal of Materials Chemistry A, 2017, 5, 23028.
9 Shi Y, Zhang B. Chemical Society Reviews, 2016, 45, 1529.
10 Chu S, Majumdar A. Nature, 2012, 488, 294.
11 Ursua A, Gandia L M, Sanchis P. Proceedings of the IEEE, 2012, 100, 410.
12 Kothari R, Buddhi D, Sawhney R L. Renewable and Sustainable Energy Reviews, 2008, 12, 553.
13 Lang Y, Arnepalli R R, Tiwari A. Journal of Nanoscience and Nanotech-nology, 2011, 11, 3719.
14 Symes M D, Cronin L. Nature Chemistry, 2013, 5, 403.
15 Voiry D, Salehi M, Silva R, et al. Nano Letters, 2013, 13, 6222.
16 Suen N T, Hung S F, Quan Q, et al. Chemical Society Reviews, 2017, 46, 337.
17 Surendranath Y, Kanan M W, Nocera D G. Journal of the American Chemical Society, 2010, 132, 16501.
18 Chandrasekaran S, Yao L, Deng L, et al. Chemical Society Reviews, 2019, 48, 4178.
19 Dong S, Chen X, Zhang X Y, et al. Coordination Chemistry Reviews, 2013, 257, 1946.
20 Wang H, Tang C, Li B Q, et al. Inorganic Chemistry Frontiers, 2018, 5, 521.
21 Wang B, Tang C, Wang H F, et al. Small Methods, 2018, 2, 1800055.
22 Zhao X H, Fan D, Pattengale Brian, et al. ACS Energy Letters, 2018, 3, 2520.
23 Liu Y Q, Zhou J. Journal of Northeast Electric Power University, 2018, 38(1), 82 (in Chinese).
刘艳群, 周静. 东北电力大学学报, 2018, 38(1), 82.
24 Chang K, Chen W X. ACS Nano, 2011, 5(6), 4720.
25 Liang Y, Feng R, Yang S, et al. Advanced Materials, 2011, 23(5), 640.
26 Peng L, Wei Z, Shah S S A. Chinese Journal of Catalysis, 2018, 39, 1575.
27 Tahir M, Pan L, Idrees F, et al. Nano Energy, 2017, 37, 136.
28 Gong M, Dai H. Nano Research, 2015, 8, 23.
29 Li L, Shao Q, Huang X, et al. Chemical Society Reviews, 2020, 49(10), 3072.
30 Li X, Hao X, Abudula A, et al. Journal of Materials Chemistry A, 2016, 4, 11973.
31 Bajdich M, García-Mota M, Vojvodic A, et al. Journal of the American Chemical Society, 2013,135, 13521.
32 Fabbri E, Habereder A, Waltar K, et al. Catalysis Science & Technology, 2014, 4, 3800.
33 Lai C H, Lu M Y, Chen L J, et al. Journal of Material Chemistry, 2012, 22, 19.
34 Yin J, Jin J, Lin H H, et al. Advanced Science, 2020, 7(10), 1903070.
35 Zhu C R, Wang A L, Zhang H, et al. Advanced Materials, 2018, 30(13), 1705516.
36 Chen Y G, Zhao S, Li Y D, et al. Journal of the American Chemical So-ciety, 2016, 138, 4286.
37 Rong Y M, He K, Warner J H, et al. ACS Nano, 2015, 9, 363.
38 Li X, Li T, Ma Y, et al. Advanced Energy Materials, 2018, 8, 1801357.
39 Tang Y, Chen T, Yu S, et al. Journal of Power Sources, 2015, 295(72), 314.
40 Zhao J, Liu H, Zhang Q. Applied Surface Science, 2017, 392(39), 1097.
41 Wang J, Chao D, Liu J, et al. Nano Energy, 2014, 7(7), 151.
42 Zhou W, Lu J, Zhou K, et al. Nano Energy, 2016 (28), 143.
43 Wang S B, Guan B Y, Lou X W, et al. Energy & Environmental Science, 2018, 11(2), 306.
44 Yang J F, Lu Y, Lou X W, et al. Angewandte Chemie International Edition, 2018, 57(1), 172.
45 Wang W H, Cao W, Geng B Y, et al. Angewandte Chemie International Edition, 2017, 56(47), 14977.
46 Xu H J, Cao J, Cao J, Tang Y, et al. Angewandte Chemie International Edition, 2018, 57, 8654.
47 Chen Y C, Lu A Y, Lu P, et al. Advanced Materials, 2017, 29(44), 1703863.
48 Cai P W, Chen J X, Wen Z H, et al. Angewandte Chemie International Edition, 2017, 129(17), 4936.
49 Zhao S L, Wang Y, Li Y F, et al. Inorganic Chemistry Frontiers, 2016, 3, 1501.
50 Ni S, Yang X, Li T, et al. Journal of Materials Chemistry, 2012, 22, 2395.
51 Yang J, Duan X, Qin Q, et al. Journal of Materials Chemistry A, 2013, 1, 7880.
52 Sun X, Dou J, Xie F, et al. Chemical Communications, 2014, 50, 9869.
53 Li Y C, Kang H Y, Li Y, et al. Materials Horizons, 2016, 3, 402.
54 Wu X L, Yang B, Li Z J, et al. RSC Advances, 2015, 5, 32976.
55 Gao M G, Yang L, Dai B, et al. Electrochimica Acta, 2016, 191, 813.
56 Xu X B, Zhong W, Zhang L, et al. International Journal of Hydrogen Energy, 2020, 45, 17329.
57 Burda C, Chen X, Narayanan A R, et al. Chemical Reviews, 2005, 105(4), 1025.
58 Kulkarni P, Nataraj S K, Balakrishna R G, et al. Journal of Materials Chemistry A, 2017, 5(42), 22040.
59 Zhang H B, Lu X F, Lou X, et al. ACS Central Science, 2020, 6(8), 1288.
60 Wu X, Han X, Ma X, et al. ACS Applied Materials & Interfaces, 2017, 9(14), 12574.
61 Peng M, Jiang L, Liang Z, et al. Advanced Materials, 2019, 31, 1902930.
62 Kong D, Wang H, Cha J, et al. Nano Letters, 2013, 13(3), 1341.
63 Liu Y W, Xiao C, Lyu M, et al. Angewandte Chemie International Edition, 2015, 127(38), 11383.
64 Feng L L, Yu G, Wu Y, et al. Journal of the American Chemical Society, 2015, 137, 14023.
65 Chauhan M, Reddy K P, Gopinath C S, et al. ACS Catalysis, 2017, 7, 5871.
66 Ma X Y, Zhang W, Deng Y D, et al. Nanoscale, 2018, 10, 4816.
67 Liu Y, Cheng H, Xie Y, et al. Journal of the American Chemical Society, 2014, 136, 15670.
68 Song J, Wei C, Wang X, et al. Chemical Society Reviews, 2020, 49, 2196.
69 Jiang H, Gu J, Li J, et al. Energy & Environmental Science, 2019, 12, 322.
70 Wu X, Kang F, Li J, et al. Progress in Natural Science: Materials International, 2019, 29, 247.
71 Cheng N, Liu Q, Sun X, et al. Journal of Materials Chemistry A, 2015, 3, 23207.
72 Li Q, Wang X, Tang K, et al. ACS Nano, 2017, 11, 12230.
73 Deng J, Li H, Li J, et al. Energy & Environmental Science, 2015, 8, 1594.
74 Liu H, He Q, Jiang H, et al. ACS Nano, 2017, 11, 11574.
75 Qiao B T, Wang A Q, Yang X F, et al. Nature Chemistry, 2011, 3, 634.
76 Yin P, Yao T, Li Y, et al. Angewandte Chemie International Edition, 2016, 55, 10800.
77 Qi K, Chhowalla M, Voiry D, et al. Materials Today, 2020, 40, 173.
78 Chen Z X, Liu C B, Liu Z, et al. Advanced Materials, 2020, 32, 1906437.
[1] 彭伟良, 袁斌. 自支撑过渡族金属基电催化析氧材料在碱水电解中的理论基础、研究现状及发展趋势[J]. 材料导报, 2021, 35(9): 9174-9185.
[2] 乔家龙, 郭飞虎, 付兵, 胡金文, 项利, 仇圣桃. 无取向硅钢中硫化物的析出机理[J]. 材料导报, 2021, 35(20): 20106-20112.
[3] 韩斌, 冯思琛, 徐俊, 李朋威. Fe掺杂NiCo-LDH的制备及OER催化性能[J]. 材料导报, 2021, 35(14): 14001-14006.
[4] 闫朋朋, 苏伟, 韦小凤, 朱学卫, 王府. 碳负载氮掺杂纳米碳化钨电催化剂的制备及析氢性能[J]. 材料导报, 2021, 35(14): 14007-14011.
[5] 夏广辉, 王丁, 李雪豹, 董鹏, 张英杰, 王皓逸. 钠离子电池金属硫化物负极材料的研究进展[J]. 材料导报, 2021, 35(13): 13041-13051.
[6] 郑浩, 刘丽华, 张中武. 热加工对硫化物及氧化物夹杂的影响[J]. 材料导报, 2021, 35(13): 13168-13176.
[7] 李锐, 孙晓刚, 黄雅盼, 魏成成, 梁国东, 邹婧怡, 徐宇浩, 何强. 三维多孔碳纳米片PC/CNT夹层高性能锂硫电池[J]. 材料导报, 2020, 34(16): 16006-16010.
[8] 郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
[9] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[10] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[11] 周琦, 任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
[12] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[13] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[14] 郭亚杰, 叶锋, 郭栋, 李帆, 李志浩. 纳米混杂结构NiSe2高效析氢电极制备及其电化学性能[J]. 材料导报, 2018, 32(23): 4084-4088.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed