Please wait a minute...
材料导报  2021, Vol. 35 Issue (9): 9174-9185    https://doi.org/10.11896/cldb.19110042
  金属与金属基复合材料 |
自支撑过渡族金属基电催化析氧材料在碱水电解中的理论基础、研究现状及发展趋势
彭伟良, 袁斌*
华南理工大学材料科学与工程学院,广州 510640
Theoretical Basis, Research Status and Development Trends of Transition Metal Based Self-supporting Materials for Electrocatalytic Oxygen Evolution Reaction in Alkaline Water Electrolysis
PENG Weiliang, YUAN Bin*
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 7332KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 发展清洁的可再生能源(如太阳能、风能等)是人类社会实现可持续发展的必然选择。在众多新能源技术中,尤其是碱水电解领域,析氧反应起着关键的作用。然而,析氧反应是一个四电子-质子耦合反应,动力学缓慢,被认为是实现高效电解水的一大阻碍。使用高效催化剂可有效地降低析氧反应过电位,提高电解过程中的能量转换效率。
近十几年来,对析氧反应机理和高效催化剂的研究取得了长足的进展,以RuO2和IrO2为代表的贵金属氧化物展现了极高的催化活性,但受限于贵金属元素较低的储量及高昂的价格,很难在工业上广泛应用。而过渡族金属催化剂储量丰富、价格低廉,且具有较好的催化活性,有望成为贵金属催化剂的替代品,在工业化电解水中大规模应用。目前,过渡族金属催化剂多数为粉末态,需要在粘接剂的作用下涂覆至导电基板上,这会对催化剂的活性位点数量、导电性以及稳定性等带来诸多不利影响,因此,研发高效、稳定、经济的自支撑过渡族金属基析氧反应催化剂至关重要。
然而,传统的自支撑过渡族金属基析氧反应催化剂本征催化活性较差,且受限于较小的比表面积,不能充分地暴露催化活性位点,导致整体催化活性偏低。此外,它们在强碱性电解液和高阳极电位下的化学稳定性较差,容易发生腐蚀,导致催化活性进一步降低。为了解决这些关键问题,研究者们提出了一些提高自支撑过渡族金属基析氧反应催化剂活性的有效策略,诸如多孔化和纳米化、强化协同效应和电子效应、形成界面耦合和电子调控下的异质结等,并提出了相应的制备方法,如水热法、电沉积法、化学气相沉积和室温化学浴等。与此同时,研究者们也对自支撑过渡族金属基析氧反应催化剂的过电位、Tafel斜率等关键评价指标进行了探讨,希望建立起一个客观公正的评价标准。
本文总结了近年来自支撑过渡族金属基析氧反应催化剂的重要研究进展,系统地介绍了析氧反应机理和过渡族金属催化剂的种类,并着重叙述了提高自支撑过渡族金属基析氧反应催化剂活性的策略及制备该催化剂的方法,最后讨论了自支撑过渡族金属基析氧反应催化剂的评价标准和现存问题及未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭伟良
袁斌
关键词:  过渡族金属  析氧反应  电催化  碱水电解    
Abstract: It is an inevitable choice for human beings to achieve sustainable development by developing clean renewable energy, such as solar energy, wind energy and so on. Oxygen evolution reaction (OER) plays an indispensable role among various advanced new energy technologies, especially in the field of alkaline water electrolysis. However, OER is a four electron-proton coupled reaction. The sluggish kinetics are considered to be a hindrance to efficient water splitting. Therefore, highly efficient catalysts are required to lower the OER overpotential to enhance the energy conversion efficiency.
Over the past decade, great progresses have been made in the mechanism of OER and efficient catalysts. Noble metal-based catalysts, such as IrO2 and RuO2, show high OER activity. Nevertheless, they suffer from high prices and limited reserves on the earth, limiting their widespread industrial applications. Therefore, it is highly attractive to develop alternative OER catalysts based on transition metals because of their relative abundance, low cost and considerable catalytic activity. Currently, most of the transition metal based OER catalysts are powders, which must be coated onto conductive substrates with the aid of binders. And the utilization of binders will adversely affect the exposure of active sites, conducti-vity, and stability of the catalysts. Therefore, it is important to develop a highly efficient, stable and economical transition metal-based self-supporting OER catalyst.
However, the common transition metal-based self-supporting OER catalysts have poor intrinsic catalytic activity, low specific surface area which provides few catalytic active sites, resulting in low overall catalytic activity. Besides, the poor chemical stability of them causes corrosion easily and further decreases catalytic activity under high concentration alkaline electrolyte and polarization potential. In order to solve these problems, researchers have proposed some strategies to improve the activity of transition metal-based self-supporting OER catalysts, including preparing porous or nano-scale catalysts, strengthening synergic effects and electronic effects, synthesizing heterostructures by coupling interface constructions and electronic engineering. Furthermore, the corresponding preparation methods, like hydrothermal method, electrodeposition method, chemical vapor deposition, and room temperature chemical bath also have been proposed. Meanwhile, researchers have offered some evaluation methods for transition metal-based self-supporting OER catalysts, such as overpotential and Tafel slope, and hoped to establish an objective and fair evaluation standard.
Herein, we summarize the research progresses of transition metal-based self-supporting OER catalysts in recent years, specially introduced the mechanism of OER and the types of transition metal catalysts, and emphatically clarified the strategies for improving the activity of transition metal-based self-supporting OER catalysts and their preparation methods. Finally, we also discussed the evaluation criteria, the existing problems and the future research directions of transition metal-based self-supporting OER catalysts.
Key words:  transition metal    oxygen evolution reaction    electrocatalysis    alkaline water electrolysis
               出版日期:  2021-05-10      发布日期:  2021-05-31
ZTFLH:  TQ426  
基金资助: 广东省自然科学基金重大基础培育项目(2017B030308001)
通讯作者:  apsheng@scut.edu.cn   
作者简介:  彭伟良,2018年6月毕业于南昌大学,获得材料科学与工程专业工学学士学位。现为华南理工大学材料科学与工程学院硕士研究生,在袁斌教授的指导下进行多孔电解水电极材料的研究。目前主要研究领域为多孔电催化析氧反应材料。
袁斌,华南理工大学材料科学与工程学院教授、博士研究生导师,教育部新世纪优秀人才。1999年在华南理工大学机械工程及自动化专业获工学学士学位,2004年在华南理工大学材料加工工程专业获工学博士学位,2005—2007年在华南理工大学从事博士后研究工作,2007年任教于华南理工大学,先后被聘为副教授、教授。曾以“研究助理”、“高级研究助理”等身份在中国香港城市大学从事合作研究工作近三年,并2011—2012年在美国西北大学材料系从事访问研究一年。主要研究方向为多孔功能材料、纳米材料和能源材料。主持国家自然科学基金项目2项,教育部“新世纪优秀人才计划”项目和广东省自然科学基金重大基础培育项目和面上项目、中国博士后基金、企事业单位委托项目超10项,并参与了国家自然科学群体、重点和面上项目、教育部长江学者和创新团队发展计划、广东省自然科学基金团队项目、广东科技计划项目等省部级项目10余项。近年来在国内外著名学术刊物上发表学术论文60余篇,还申请中国发明专利20余件,美国专利2件,PCT专利3件,其中获授权中国发明15件,PCT专利2件。共同撰写工具书1部,参编十三五高等教育规划教材1部。获得广东省科学技术一等奖1项和2012年亚太优秀材料青年科学家年会优秀邀请报告奖。
引用本文:    
彭伟良, 袁斌. 自支撑过渡族金属基电催化析氧材料在碱水电解中的理论基础、研究现状及发展趋势[J]. 材料导报, 2021, 35(9): 9174-9185.
PENG Weiliang, YUAN Bin. Theoretical Basis, Research Status and Development Trends of Transition Metal Based Self-supporting Materials for Electrocatalytic Oxygen Evolution Reaction in Alkaline Water Electrolysis. Materials Reports, 2021, 35(9): 9174-9185.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110042  或          http://www.mater-rep.com/CN/Y2021/V35/I9/9174
1 Li Q X, Liu X T, Liu K F, et al. Natural Gas Chemical Industry,2015,40(1),78(in Chinese).
李庆勋,刘晓彤,刘克峰,等.天然气化工,2015,40(1),78.
2 Suen N T, Hung S F, Quan Q, et al. Chemical Society Reviews,2017,46(2),337.
3 Cai Z, Bu X, Wang P, et al. Journal of Materials Chemistry A,2019,7(10),5069.
4 Dau H, Limberg C, Reier T, et al. ChemCatChem,2010,2(7),724.
5 Man I C, Su H, Calle-Vallejo F, et al. ChemCatchem,2011,3(7),1159.
6 Fabbri E, Habereder A, Waltar K, et al. Catalysis Science & Technology,2014,4(11),3800.
7 Zhou W, Guo L. Chemical Society Reviews,2015,44(19),6697.
8 Suntivich J, May K J, Gasteiger H A, et al. Science,2011,334(6061),1383.
9 Gong M, Li Y, Wang H, et al. Journal of the American Chemical Society,2013,135(23),8452.
10 Song F, Hu X. Nature Communications,2014,5,4477.
11 Sivanantham A, Ganesan P, Vinu A, et al. ACS Catalysis,2020,10,465.
12 Wu T Z, Sun S N, Song J J, et al. Nature Catalysis,2019,2(9),763.
13 Guo F, Wu Y, Chen H, et al. Energy & Environmental Science,2019,12(2),684.
14 Ji J, Zhang L L, Ji H, et al. ACS Nano,2013,7(7),6237.
15 Schafer H, Chatenet M. ACS Energy Letters,2018,3(3),574.
16 Cui X D, Zhang B L, Zeng C Y, et al. International Journal of Hydrogen Energy,2018,43(32),15234.
17 Huang X L, Chang S, Lee W S V, et al. Journal of Materials Chemistry A,2017,5(34),18176.
18 Xiong X, You C, Liu Z, et al. ACS Sustainable Chemistry & Enginee-ring,2018,6(3),2883.
19 Mitra D, Narayanan S R. Topics in Catalysis,2018,61(7-8),591.
20 Sun S G, Cheng S L. Electrocatalysis, Chemical Industry Press, China,2013(in Chinese).
孙世刚,陈胜利.电催化,化学工业出版社,2013.
21 Lu Z, Xu W, Zhu W, et al. Chemical Communications,2014,50(49),6479.
22 Li P, Duan X, Kuang Y, et al. Advanced Energy Materials,2018,8(15),1703341.
23 Zhou D J, Cai Z, Jia Y, et al. Nanoscale Horizons,2018,3(5),532.
24 Yeo B S, Bell A T. Journal of the American Chemical Society,2011,133(14),5587.
25 Xiang Q, Li F, Chen W L, et al. ACS Energy Letters,2018,3(10),2357.
26 Zhang J, Wang T, Pohl D, et al. Angewandte Chemie International Edition,2016,55(23),6702.
27 Zhang H, Li X, Angelika Hähnel, et al. Advanced Functional Materials,2018,28,1706847.
28 Wu Y, Li F, Chen W L, et al. Advanced Materials,2018,30(38),1803151.
29 Liu J, Wang J, Zhang B, et al. ACS Applied Materials & Interfaces,2017,9(18),15364.
30 Lu X, Zhao C. Nature Communications,2015,6,6616.
31 Yao M, Sun B, Wang N, et al. Applied Surface Science,2019,480,655.
32 Balogun M S, Qiu W, Huang Y, et al. Advanced Materials,2017,29(34),1702095.
33 Zhu W, Yue X, Zhang W, et al. Chemical Communications,2015,52(7),1486.
34 You B, Sun Y. Advanced Energy Materials,2016,6(7),1502333.
35 Yuan C Z, Sun Z T, Jiang Y F, et al. Small,2017,13(18),1604161.
36 Zhu W X, Zhang T S, Zhang Y, et al. Applied Catalysis B: Environmental,2019,244,844.
37 Yang H C, Wang C H, Zhang Y J, et al. Science China Materials,2019,62(5),681.
38 Zhang D B, Kong X G, Jiang M H, et al. ACS Sustainable Chemistry. Engineering,2019,7(4),4420.
39 Zhang G, Yuan J, Liu Y, et al. Journal of Materials Chemistry A,2018,6(22),10253.
40 Kou T Y, Wang S W, Hauser J L, et al. ACS Energy Letters,2019,4,622.
41 Gong M, Dai H. Nano Research,2015,8(1),23.
42 Teng X, Wang J, Ji L, et al. ACS Sustainable Chemistry & Engineering,2019,7(5),5412.
43 Jia X, Zhao Y, Chen G, et al. Advanced Energy Materials,2016,6(10),1502585.
44 Zhang F S, Wang J W, Luo J, et al. Chemical Science,2018,9(5),1375.
45 Zhang B, Xiao C H, Xie S M, et al. Chemistry of Materials,2016,28,6934.
46 Xiao C H, Zhang B, Li D. Electrochimica Acta,2017,242,260.
47 Ma Y M, Wang K, Liu D Y, et al. Journal of Materials Chemistry A,2019,7,22889.
48 Zhang C. The design and synthesis of layered double hydroxides electrocatalysts toward enhanced oxygen evolution reaction. Ph.D. Thesis, Beijing University of Chemical Technology, China,2017(in Chinese).
张丛.水滑石基高效析氧电催化剂的制备及其性能研究.博士学位论文,北京化工大学,2017.
49 Mccrory C C L, Jung S, Ferrer I M, et al. Journal of the American Chemical Society,2015,137(13),4347.
50 Stevens M B, Enman L J, Batchellor A S, et al. Chemistry of Materials,2017,29(1),120.
51 Mccrory C C L, Jung S, Peters J C, et al. Journal of the American Chemical Society,2013,135(45),16977.
52 Sun S, Li H, Xu Z J. Joule,2018,2(6),1019.
53 Li D. Principles of electrochemistry, Beihang University Press, China,2008(in Chinese).
李荻.电化学原理,北京航空航天大学出版社,2008.
54 Bockris J O M, Reddy A K N. Comprehensive modern electrochemistry, Plenum, New York,1970.
55 Guidelli R, Compton R G, Feliu J M, et al. Pure Applied Chemistry,2014,86(2),4.
56 Shinagawa T, Garcia-Esparza A T, Takanabe K. Scientific Reports,2015,5,13801.
57 Tahir M, Pan L, Idrees F, et al. Nano Energy,2017,37,136.
58 Niu S, Jiang W J, Tang T, et al. Advanced Functional Materials,2019,29(36),1902180.
59 Chen R, Hung S F, Zhou D J, et al. Advanced Materials,2019,31(41),1903909.
[1] 雷静, 陈子茜, 李怡招, 曹亚丽. 用于电催化氧还原制备双氧水的催化剂的研究进展[J]. 材料导报, 2021, 35(9): 9140-9149.
[2] 吴雷, 彭犇, 周军, 刘长波, 岳昌盛, 田玮, 宋永辉, 姜磊. 碳基非贵金属电催化剂研究进展[J]. 材料导报, 2020, 34(23): 23009-23019.
[3] 郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
[4] 杜洪方, 王珂, 何松, 杨凯, 艾伟, 黄维. 富缺陷晶态WSe2纳米片:一种潜在的高效低成本析氢反应电催化剂[J]. 材料导报, 2020, 34(1): 1195-1200.
[5] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[6] 王会权, 陈惠, 王后, 巫静, 刘洪波. 还原温度对石墨烯负载Pd颗粒的结构与电催化性能的影响[J]. 材料导报, 2019, 33(22): 3695-3700.
[7] 王鹏飞, 邓宇, 郝丽梅, 邓橙, 赵蕾, 张新奇, 朱孟府. 铋掺杂二氧化锡/炭膜电催化膜的制备及表征[J]. 材料导报, 2019, 33(18): 3016-3020.
[8] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[9] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[10] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[11] 夏艺萌, 吴帅, 谭丰, 李卫, 魏清茂, 闵春刚, 杨喜昆. 钴盐阴离子基团对Co-N-C催化剂电催化活性的影响[J]. 《材料导报》期刊社, 2018, 32(3): 362-367.
[12] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[13] 张显峰, 赵朝成, 王德军, 赵媛媛, 张勇, 郭锐. 基于SnO2/Fe3O4粒子电极的三维电极体系的电催化性能*[J]. 《材料导报》期刊社, 2017, 31(8): 25-30.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed