Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23050-23056    https://doi.org/10.11896/cldb.20050261
  无机非金属及其复合材料 |
普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展
李欢, 何妍妍, 周国伟
齐鲁工业大学(山东省科学院)化学与化工学院,山东省高校轻工精细化学品重点实验室,济南 250353
Progress in Sodium Ion Batteries of Prussian Blue and Prussian Blue Analogs Materials
LI Huan, HE Yanyan, ZHOU Guowei
Key Laboratory of Fine Chemicals in Universities of Shandong,School of Chemistry and Chemical Engineering, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, China
下载:  全 文 ( PDF ) ( 5624KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,普鲁士蓝(PB)及普鲁士蓝类化合物(PBAs)用于钠离子电池电极材料方面的研究逐渐深入。作为金属有机框架(MOFs)材料,PB及PBAs是具有可调控的化学组成和物理性质的简单配位聚合物。PB及PBAs可直接作为高性能钠离子电池正极材料,也可以通过与其他材料复合用于钠离子电池正极;此外,利用PB及PBAs作为前驱体制备各类具有纳米结构的金属化合物(如金属氧化物、金属硫化物、金属硒化物和金属磷化物等)及金属化合物复合材料,并用于钠离子电池负极。本文简要介绍了PB、PBAs和以它们为前驱体制备的金属化合物及复合材料在钠离子存储方面的应用研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李欢
何妍妍
周国伟
关键词:  普鲁士蓝及普鲁士蓝类化合物  钠离子半/全电池  正极材料  负极材料  复合材料    
Abstract: In recent years, Prussian blue (PB) and Prussian blue analogs (PBAs) materials have been widely studied in application of sodium ion batte-ries (SIBs). PB and PBAs, asa kind of metal organic framework (MOFs) material, are simple coordination polymers with adjustable chemical composition and physical properties. Firstly, PB, PBAs and their composites can be used as high-performance cathode materials for SIBs directly. Otherwise, PB and PBAs can also be used as precursors to prepare various nanostructured metal compounds (such as metal oxides, metal sulifides, metal selenides and metal phosphides) and their composites, which could be used as high-performance anode materials for SIBs. In this study, we will introduce the research progresses of PB, PBAs and their derived metal compounds in application of sodium ion storage.
Key words:  PB and PBAs    sodium ion half/full battery    cathode material    anode material    composite material
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TM911  
基金资助: 国家自然科学基金(51972180;51572134);山东省重点研发计划 (2019GGX102070);济南市高校院所创新团队项目(2018GXRC006)
通讯作者:  heyanyan@qlu.edu.cn;gwzhou@qlu.edu.cn   
作者简介:  李欢,硕士研究生,主要研究方向为钠离子电池和锂离子电池电极材料的制备和机理研究。在Chemical Engineering Journal, Nano Research, Chinese Journal of Catalysis发表SCI论文3篇,申请国家发明专利两件。
何妍妍,理学博士,主要从事能源存储材料的设计合成和机理研究。主持山东省自然科学基金与齐鲁工业大学博士启动基金,在Energy Storage Materials, Journal of Mater-ials Chemistry A, Chemical Engineering Journal, Nano Research等期刊发表SCI收录论文20篇,申请国家发明专利4件。
周国伟,博士,二级教授,博士研究生导师,山东省有突出贡献中青年专家,山东省优秀科技工作者,享受国务院政府特殊津贴。2001年获山东大学博士学位,2002和2005年分别在韩国釜庆大学和香港科技大学从事博士后研究。主要从事介孔材料的可控制备及在催化、能源存储与转化等领域研究。主持国家自然科学基金4项,在 Chemical Engineering Journal, Journal of Materials Chemistry, Chemical Communications等期刊上发表SCI收录论文110余篇。获山东省科学技术奖二等奖3项,获国家授权发明专利40余件。
引用本文:    
李欢, 何妍妍, 周国伟. 普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展[J]. 材料导报, 2021, 35(23): 23050-23056.
LI Huan, HE Yanyan, ZHOU Guowei. Progress in Sodium Ion Batteries of Prussian Blue and Prussian Blue Analogs Materials. Materials Reports, 2021, 35(23): 23050-23056.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050261  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23050
1 Huang Y Y, Zheng Y H, Li X, at al.ACS Energy Letter, 2018, 3(7), 1604.
2 Nayak P K, Yang L T, Brehm W, et al. Angewandte Chemie, 2018, 130, 106.
3 He Y Y, Luo M, Dong C F, et al.Journal of Materials Chemistry A, 2019, 7(8), 3933.
4 Ge P, Li S J, Shuai H L, et al. Advanced Materials, 2019, 31(3), 1806092.
5 Jiao S Q, Tuo J J, Xie H L, et al.Materials Research Bulletin, 2017, 86, 194.
6 Niu L, Chen L, Zhang J, et al. Journal of Power Sources, 2018, 380, 135.
7 Baster D, Oveisi E, Mettraux P, et al. Chemical Communications, 2019, 55(97), 14633.
8 Xie M, Huang Y X, Xu M H, et al.Journal of Power Sources, 2016, 302, 7.
9 You Y, Manthiram A. Advanced Energy Materials, 2018, 8(2), 1701785.
10 Oh S M, Myung S M, Yoon C S, et al. Nano Letters, 2014, 14(3), 1620.
11 Wang H G, Yuan S, Ma D L, et al.Advanced Energy Materials, 2014, 4(7), 1301651.
12 Jiang Y Z, Yu S L, Wang B Q, et al.Advanced Functional Materials, 2016, 26(29), 5315.
13 Qian J F, Zhou M, Cao Y L, et al.Advanced Energy Materials, 2012, 2(4), 410.
14 You Y, Wu X L, Yin X Y, et al.Energy and Environmental Science, 2014, 7(5), 1643.
15 Tang X, Liu H, Su D W, et al.Nano Research, 2018, 11(8), 3979.
16 Fu H Y, Liu C F, Zhang C K, et al.Journal of Materials Chemistry A, 2017, 5(20), 9604.
17 Peng J, Wang J S, Yi H C, et al.Advanced Energy Materials, 2018, 8(11), 1702856.
18 Wu X Y, Wu C H, Wei C X, et al.ACS Applied Materials & Interfaces, 2016, 8(8), 5393.
19 Xie M, Xu M, Huang Y, et al.Electrochemistry Communications, 2015, 59, 91.
20 Zhang Q, Fu L, Luan J, et al.Journal of Power Sources, 2018, 395, 30.
21 Li W J, Chou S L, Wang J Z, et al.Nano Energy, 2015, 13, 200.
22 Wang X, Wang B Q, Tang Y X, et al.Journal of Materials Chemistry A, 2020, 8(6), 3222.
23 Luo J H, Sun S X, Peng J, et al.ACS Applied Materials & Interfaces, 2017, 9(30), 25317.
24 Wang H, Wang L, Chen S M, et al.Journal of Materials Chemistry A, 2017, 5(7), 3569.
25 Zhang M, Zhou J, Yu J L, et al.Chemical Engineering Journal, 2020, 387, 123170.
26 Wan M, Tang Y, Wang L L, et al.Journal of Power Sources. 2016, 329, 290.
27 Yin J W, Shen Y, Li C, et al.ChemSusChem, 2019, 12(21), 4786.
28 Xu J T, Dou Y H, Wei Z X, et al.Advanced Science, 2017, 4(10), 1700146.
29 Sun J, Lee H W, Pasta M, et al. Nature Nanotechnology, 2015, 10(11), 980.
30 Zhang X J, Li D S, Zhu G, et al.Journal of Colloid and Interface Science, 2017, 499, 145.
31 Xie X, Ao Z, Su D, et al.Advanced Functional Materials, 2015, 25(9), 1393.
32 Zhang X J, Gao X Y, Wu Z Y, et al.Chemical Physics, 2019, 523, 124.
33 Guo Y, Zhu Y Y, Yuan C, et al.Materials Letters, 2017, 199, 101.
34 Chen J W, Li S H, Kumar V, et al. Advanced Energy Materials, 2017, 7(19), 1700180.
35 Park J S, Yang S J, Kang Y C. Chemical Engineering Journal, 2020, 393, 124606.
36 Lim Y W, Wang Y, Kong D Z, et al. Journal of Materials Chemistry A, 2017, 5, 10406.
37 Tian J W, Li J, Zhang Y X, et al.Journal of Materials Chemistry A, 2019, 7(37), 21404.
38 Fang Y J, Yu X Y, Lou X W. Advanced Materials, 2018, 30(21), 1706668.
39 Wan M, Zeng R, Chen K Y, et al.Energy Storage Materials, 2018, 10, 114.
40 Von L Y, Huang S Z, Zhang Y M, et al.Energy Storage Materials, 2018, 15, 98.
41 Li Z Q, Zhang L Y, Ge X L, et al.Nano Energy, 2017, 32, 494.
42 Zhang J S, Zhang D P, Niu F E, et al.ChemPlusChem, 2017, 82, 1170.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[3] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[4] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[5] 高玉龙, 王松, 张联合, 台永丰. 轨道车辆复合材料层压板结构的超声检测方法研究[J]. 材料导报, 2021, 35(z2): 433-436.
[6] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[7] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[8] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[9] 杨俊, 何创创, 罗小芳. 短切玻纤含量对TiO2/PTFE复合材料性能的影响[J]. 材料导报, 2021, 35(z2): 570-572.
[10] 张奇, 张震东, 任杰. 正六边形玻璃纤维增强复合材料多胞结构准静态压缩试验研究[J]. 材料导报, 2021, 35(z2): 573-578.
[11] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[12] 张雷, 庄毅, 李姗姗, 唐毓婧, 李静, 罗欣. 不同工况下车用复合材料板簧的动态疲劳测试研究[J]. 材料导报, 2021, 35(z2): 583-588.
[13] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[14] 于冬雪, 于化杰, 黎红兵, 梁爽. FRP建筑材料的结构性能及应用综述[J]. 材料导报, 2021, 35(z2): 660-66.
[15] 胡炜杰, 钟明建, 杨营, 盘茂森, 任清刚. 碳纤维复合材料的回收与再利用技术[J]. 材料导报, 2021, 35(z2): 627-633.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed