Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14001-14006    https://doi.org/10.11896/cldb.20050113
  无机非金属及其复合材料 |
Fe掺杂NiCo-LDH的制备及OER催化性能
韩斌1, 冯思琛2, 徐俊2,*, 李朋威2,*
1 厦门大学材料学院,厦门 361001
2 厦门大学物理科学与技术学院,厦门 361001
Preparation of Fe-doped NiCo-LDH and Its OER Performance
HAN Bin1, FENG Sichen2, XU Jun2,*, LI Pengwei2,*
1 College of Materials, Xiamen University, Xiamen 361001, China
2 College of Physical Science and Technology, Xiamen University, Xiamen 361001, China
下载:  全 文 ( PDF ) ( 24147KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 层状双金属氢氧化物(LDH)因具有组成和结构易于调变等优势而被广泛用作析氧反应(Oxygen evolution reaction, OER)催化剂。通过溶剂热法合成了由二维纳米片组成的花状结构的NiCo-LDH材料,并利用Fe离子对其进行刻蚀,合成了Fe掺杂的NiCo-LDH。在OER催化性能测试中,与未刻蚀的NiCo-LDH相比,在电流密度为10 mA·cm-2时,Fe掺杂的NiCo-LDH材料的过电位仅为273 mV,塔菲尔斜率为98 mV·dec-1,OER性能显著提升。此外,所合成的Fe掺杂的NiCo-LDH材料还表现出良好的长期稳定性,经过16 h的连续测试,其OER催化活性仍然能保持在80%。Fe离子刻蚀使NiCo-LDH纳米片具有较多的边缘缺陷,能够提供更多的边缘位点作为活性中心;并且Fe离子的引入改变了NiCo-LDH的电子结构,增加了LDH的层间距离,从而有效改善了催化剂的催化活性和动力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩斌
冯思琛
徐俊
李朋威
关键词:  析氧反应  Fe掺杂NiCo-LDH  化学刻蚀    
Abstract: Layered double hydroxide (LDH) is widely used as the oxygen evolution reaction (OER) catalyst because of its easily adjustable composition and structure. The flower-like NiCo-LDH composed of two-dimensional nanosheets was synthesized by the solvothermal method and etched by Fe ions to obtain Fe-doped NiCo-LDH. The OER activities were then evaluated, Fe-doped NiCo-LDH achieves the overpotential of 273 mV at the current density of 10 mA·cm-2, and the Tafel slope was 98 mV·dec-1, leading to improved OER performance. In addition, the Fe-doped NiCo-LDH also showed excellent long-term stability. After 16 h continuous tests, the performance can still maintain 80%. The Fe-doped NiCo-LDH nanosheets have more edge defects and can provide more edge sites as active sites. Moreover, the introduction of Fe ions changed the electronic structure of NiCo-LDH, and increased the spacing between the sheets, thus significantly improving its activity and kinetic properties.
Key words:  oxygen evolution reaction (OER)    Fe-doped NiCo-LDH    chemical etching
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TB321  
基金资助: 国家自然科学基金(21771154);中央高校基本科研业务费专项基金(20720180019)
通讯作者:  * xujun@xmu.edu.cn;l_pw0708@126.com   
作者简介:  韩斌,2016年本科毕业于中国计量大学材料科学工程专业,获得工学学位,并于2020年毕业于厦门大学材料学院生物医学工程专业,取得硕士学位。主要从事二维纳米材料的制备及其稳定性研究。
徐俊,福建省厦门大学物理科学与技术学院教授。2007年硕士毕业于厦门大学生物医学工程专业,2012年毕业于新加坡南洋理工大学,获得化学与生物化学专业博士学位。主要研究方向为二维材料、锂离子电池电极材料和光电催化电极材料。
李朋威,厦门大学物理科学与技术学院博士。2016年7月本科毕业于华东理工大学新能源材料与器件专业,同年9月进入华东理工大学材料科学与技术学院攻读硕士学位,2019年9月进入厦门大学物理科学与技术学院攻读博士学位。主要研究方向为设计高效稳定的过渡金属基析氧反应催化剂。
引用本文:    
韩斌, 冯思琛, 徐俊, 李朋威. Fe掺杂NiCo-LDH的制备及OER催化性能[J]. 材料导报, 2021, 35(14): 14001-14006.
HAN Bin, FENG Sichen, XU Jun, LI Pengwei. Preparation of Fe-doped NiCo-LDH and Its OER Performance. Materials Reports, 2021, 35(14): 14001-14006.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050113  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14001
1 Osgood H, Devaguptapu S V, Xu H, et al.Nano Today,2016,11,601.
2 Hu J M, Zhang J Q, Cao C N. International Journal of Hydrogen Energy,2004,29,791.
3 Seh Z W, Kibsgaard J, Dickens C F, et al. Science,2017,355(6321),eaad4998.
4 Septiani N L W, Kaneti Y V, Guo Y, et al. ChemSusChem,2020,13,1645.
5 Reier T, Oezaslan M, Strasser P. ACS Catalysis,2012,2,1765.
6 Zhou D, Cai Z, Lei X, et al. Advanced Energy Materials,2018,8,1701905.
7 Roger I, Shipman M A, Symes M D. Nature Reviews Chemistry,2017,1,1.
8 Li J, Jiang S, Shao M, et al. Catalysts,2018,8,214.
9 Yuan F, Wei J, Qin G, et al. Journal of Alloys and Compounds, DOI:10.1016/j.jallcom.2020.154658.
10 Xiang K, Guo J, Xu J, et al. ACS Applied Energy Materials,2018,1,4040.
11 Chen W, Zhang Y, Huang R, et al. Journal of Materials Chemistry A,2019,7,4950.
12 Yu M, Zhou S, Wang Z, et al. Nano Energy,2018,44,181.
13 Li X, Hao X, Abudula A, et al. Journal of Materials Chemistry A,2016,4,11973.
14 Song F, Hu X. Nature Communications,2014,5,4477.
15 Ma Q, Li B, Huang F, et al. Electrochimica Acta,2019,317,684.
16 Wang J, Zeng H C. ACS Applied Energy Materials,2018,1,4998.
17 Wan S, Jin W, Guo X, et al. ACS Sustainable Chemistry & Engineering,2018,6,15374.
18 Chen H, Hu L, Chen M, et al. Advanced Functional Materials,2014,24,934.
19 Yang R, Zhou Y, Xing Y, et al. Applied Catalysis B: Environmental,2019,253,131.
20 Wang Y, Qiao M, Li Y, et al. Small,2018,14,1800136.
21 Zhao C, Li P, Shao D, et al. International Journal of Hydrogen Energy,2019,44,844.
22 Zhuang L, Ge L, Yang Y, et al. Advanced Materials,2017,29,1606793.
23 Zhou P, Wang Y, Xie C, et al. Chemical Communications,2017,53,11778.
24 Shinagawa T, Garcia-Esparza A T, Takanabe K. Scientific Reports,2015,5,13801.
25 Gao Y, Li H, Yang G. Crystal Growth & Design,2015,15,4475.
26 Barforoush J M, Seuferling T E, Jantz D T, et al. ACS Applied Energy Materials,2018,1,1415.
27 Zhou Q, Chen Y, Zhao G, et al. ACS Catalysis,2018,8,5382.
28 Burke M S, Kast M G, Trotochaud L, et al. Journal of American Chemical Society,2015,137,3638.
29 Liu H, Li X, Peng C, et al. Journal of Materials Chemistry A, DOI: 10.1039/d0ta03411h.
[1] 彭伟良, 袁斌. 自支撑过渡族金属基电催化析氧材料在碱水电解中的理论基础、研究现状及发展趋势[J]. 材料导报, 2021, 35(9): 9174-9185.
[2] 商富强, 黄丽清, 李刚, 张宇, 蔡亚坤, 王慧敏, 董伟丽, 张磊, 刘悠. 超亲水和具有不同黏性的超疏水阳极氧化铝膜的制备[J]. 材料导报, 2020, 34(10): 10003-10007.
[3] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[4] 邹宇新, 邱佳佳, 席风硕, 杨玺, 李绍元, 马文会. 纳米金属银、铜辅助化学刻蚀制绒金刚线切割多晶硅的研究[J]. 材料导报, 2018, 32(21): 3706-3711.
[5] 何霄,邹宇新,邱佳佳,杨玺,李绍元,马文会. 交替刻蚀制备有序锯齿形硅纳米线阵列及其光学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 167-170.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed