Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3701-3707    https://doi.org/10.11896/cldb.18090290
  无机非金属及其复合材料 |
脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能
周琦,任向荣
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Nanoporous Ni and NiO Prepared by De-alloying as Anodes for Electrocatalytic Oxygen Evolution Reaction
ZHOU Qi, REN Xiangrong
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 3236KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用快速凝固与脱合金化相结合的方法制备纳米多孔Ni,经热处理氧化获得纳米多孔NiO,运用XRD、SEM、TEM、BET等对纳米多孔Ni、NiO的物相、形貌结构、孔径分布进行表征,并通过循环伏安、稳态极化、电化学阻抗法研究了其作为电极的电催化析氧性能。结果表明,Ni15Al85和Ni5Al95脱合金化后均获得了纳米多孔Ni,Al含量的增加使得Ni的孔径尺寸与骨架强度减小,Ni5Al95形成的纳米多孔Ni在10 mA·cm-2电流密度下的析氧过电位比Ni15Al85形成的纳米多孔Ni低95 mV,但随着反应的进行,纳米多孔Ni表面的孔洞开始坍塌和脱落,导致其析氧稳定性降低。NiO继承了Ni的纳米多孔结构,比表面积和骨架强度进一步增大,Ni5Al95合金获得的纳米多孔NiO在10 mA·cm-2电流密度下的析氧过电位仅为357 mV,相比Ni电极降低了14.3 mV,室温下析氧反应的表观交换电流密度是Ni电极的1.2倍,表观活化自由能降低了8.59 kJ·mol-1,经1 000圈循环伏安后过电位降低了12 mV(J=100 mA·cm-2), 具有优良的电催化析氧性能和良好的稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周琦
任向荣
关键词:  快速凝固  脱合金化  纳米多孔镍  析氧性能  阳极材料  电解水    
Abstract: Nanoporous Ni was prepared by a combined method of rapid quenching and de-alloying, and then prepared samples were heated to synthesize the nanoporous NiO. The phase, morphology, microstructure and pore-size distribution of nanoporous Ni and NiO were analyzed by XRD, SEM, TEM, BET respectively.The electrochemical performance was investigated by cyclic voltammetry, electrochemical steady-state polarization and electrochemical impendence spectroscopy (EIS). The results showed that nanoporous Ni could be obtained after de-alloying of Ni15Al85 and Ni5Al95 alloy. The bore diameter and skeleton strength of Ni decreased as the Al content increased. Under the current density of 10 mA·cm-2, oxygen evolution reaction overpotential of nanoporous Ni drove from Ni5Al95 alloy was 95 mV lower than nanoporous Ni from Ni15Al85 alloy. However, with the reaction proceeded, collapse and detachment of the surface holes reduced the stability of oxygen evolution. NiO inherited the nanoporous structure of Ni, and further increased the specific surface area and skeleton strength of the electrode. Under the current density of 10 mA·cm-2, oxygen evolution reaction overpotential of nanoporous NiO electrode was only 357 mV, which lower than Ni electrode 14.3 mV. The apparent exchange current density of NiO electrode toward the OER was 1.2 times as high as that of nickel electrode in room temperature, the apparent activation energy reduced 8.59 kJ·mol-1, after 1 000 cycles, overpotential of NiO minished 12 mV (J=100 mA·cm-2), nanoporous NiO drove from Ni5Al95 alloy had superior electrocatalytic properties toward the oxygen evolution reaction and favorable stability.
Key words:  rapid quenching    de-alloying    nanoporous Ni    oxygen evolution reaction    anode material    electrolysis of water
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TG146.1  
  TQ138.1  
基金资助: 国家自然科学基金 (51661018)
作者简介:  周琦,教授,博士生导师。长期致力于材料的腐蚀与防护、材料的微观结构与性能、新型能源材料的制备技术与应用等方面的研究工作。在国内外主要刊物以第一作者发表学术论文60余篇,20 余篇被SCI、EI检索。获省市科技进步三等奖2项、甘肃省第十一届社会科学优秀成果三等奖1项。
引用本文:    
周琦, 任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
ZHOU Qi, REN Xiangrong. Nanoporous Ni and NiO Prepared by De-alloying as Anodes for Electrocatalytic Oxygen Evolution Reaction. Materials Reports, 2019, 33(22): 3701-3707.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090290  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3701
[1] Chang J F, Yao X, Luo Z Y, et al. Acta Physico-Chimica Sinica, 2016, 32(7),1556(in Chinese).常进法, 肖瑶, 罗兆艳,等. 物理化学学报, 2016, 32(7),1556.
[2] Gao X S. Preparation and performance of mesoporous binary metal oxide nanorods as oxygen evolution catalyst. Master’s Thesis, Taiyuan University of Technology, China, 2017(in Chinese).高旭升. 介孔二元金属氧化物纳米棒析氧催化剂的制备及性能研究.硕士学位论文, 太原理工大学, 2017.
[3] Peng L,Shah S S A, Wei Z. Chinese Journal of Catalysis, 2018,10, 1575.
[4] Koper M T M. Journal of Electroanalytical Chemistry, 2011, 660(2),254.
[5] Gong M, Dai H. Nano Research, 2015, 8(1),23.
[6] Lee Y, Jin S, May K J, et al. Journal of Physical Chemistry Letters, 2015, 3(3),399.
[7] Xu L, Jiang Q, Xiao Z, et al. Angewandte Chemie International Edtion, 2016, 55(17),5277.
[8] Du S, Ren Z, Zhang J, et al. Chemical Communications, 2015, 51(38),8066.
[9] Mccrory C C, Jung S, Peters J C, et al. Journal of the American Chemical Society, 2013, 135(45),16977.
[10] Lyons M E G, Brandon M P. International Journal of Electrochemical Scie-nce, 2008, 3(12), 1425.
[11] Hou Y, Lohe M R, Zhang J, et al. Energy & Environmental Science, 2015, 9(2),478.
[12] Li Z P. The research on cobalt and nickel sulfides supported carbon nanotubes catalysts for oxygen evolution reaction of the water electrolysis. Master’s Thesis, South China University of Technology, China, 2014(in Chinese).李钟平. 碳纳米管负载钴、镍硫化物催化剂电解水析氧的研究. 硕士学位论文,华南理工大学, 2014.
[13] Subbaraman R, Tripkovic D, Chang K C, et al. Nature Materials, 2012, 11(6),550.
[14] Xiao Y, Feng L, Hu C, et al. RSC Advances, 2015, 5(76),61900.
[15] Ding Y. Journal of Shandong University, 2011, 46(10),121 (in Chinese).丁轶. 山东大学学报, 2011, 46(10),121.
[16] Fang X M, Lian L X, Liu Y, et al. Rare Metal Materials & Engineering, 2014, 43(11),2753(in Chinese).方秀梅, 连利仙, 刘颖,等. 稀有金属材料与工程, 2014, 43(11),2753.
[17] Cao F, Zhang W, Zhang S, et al. Materials Review A:Review Papers, 2017, 31(11),139(in Chinese).曹凤, 张文彦, 张思思,等. 材料导报:综述篇, 2017, 31(11),139.
[18] Zhou Q, Zheng B, Li Z Y, et al. Chinese Journal of Inorganic Chemistry, 2017, 33(8),1416(in Chinese).周琦, 郑斌, 李志洋,等.无机化学学报, 2017, 33(8),1416.
[19] Wang X, Qi Z, Zhao C, et al. Journal of Physical Chemistry C, 2009, 113(30),13139.
[20] Babar P T, Lokhande A C, Gang M G, et al. Journal of Industrial & Engineering Chemistry, DOI.org/10.1016/j.jiec.2017.11.037.
[21] Li J, Luo F, Zhao Q, et al. Journal of Materials Chemistry A, 2014, 2(13),4690.
[22] Manders J R, Tsang S, Hartel M J, et al. Advanced Functional Mate-rials, 2013, 23(23),2993.
[23] Chen G. Study on the synthesis and properties of NiO-based electrode materials for supercapacitors. Ph.D. Thesis, Yunnan University, China, 2016(in Chinese).陈刚. 基于NiO超级电容器电极材料的制备及其性能研究.博士学位论文,云南大学, 2016.
[24] Liu Y, Hua X, Xiao C, et al. Journal of the American Chemical Society, 2016, 138(15),5087.
[25] Zhu L, Cai Q, Liao F, et al. Electrochemistry Communications, 2015, 52(15),29.
[26] Jeyaprabha C, Sathiyanarayanan S, Venkatachari G. Applied Surface Science, 2006, 253(2), 432.
[27] Rakhi R B, Chen W, Hedhili M N, et al. ACS Applied Materials and Interfaces, 2014, 6(6),4196.
[28] Min S, Zhao C, Chen G, et al. Electrochimica Acta, 2014, 135(22),336.
[29] Wang J, Zhong H X, Qin Y L, et al. Angewandte Chemie, 2013, 52(20),5248.
[30] Bao J Z, Wang S L. Acta Physico-Chimica Sinica, 2011, 27(12),2849(in Chinese).鲍晋珍, 王森林. 物理化学学报, 2011, 27(12),2849.
[1] 黄柯,赵阳,张昌松,王晓明,常青,邱六,关雪飞. PREP法制备球形CuAl10Fe3铜合金粉末的性能表征[J]. 材料导报, 2019, 33(22): 3783-3788.
[2] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[3] 郭亚杰, 叶锋, 郭栋, 李帆, 李志浩. 纳米混杂结构NiSe2高效析氢电极制备及其电化学性能[J]. 材料导报, 2018, 32(23): 4084-4088.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed