Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 20120091-6    https://doi.org/10.11896/cldb.20120091
  高分子与聚合物基复合材料 |
基于磁场-真空协同作用局部调制胆甾型纤维素
于佳酩1,2, 王士鹏1, 董娅慧1, 王雨梦1, 李玉3, 程倩1
1 东北林业大学材料科学与工程学院, 哈尔滨 150000
2 哈尔滨工业大学化工与化学学院, 哈尔滨 150000
3 东北林业大学理学院, 哈尔滨 150000
Local Modulation of Cholesteric Cellulose Nanocrystals Based on Magnetic Field-Vacuum Synergistic Effect
YU Jiaming1,2, WANG Shipeng1, DONG Yahui1, WANG Yumeng1, LI Yu3, CHENG Qian1
1 College of Materials Science and Engineering, Northeast Forestry University, Harbin 150000, China
2 School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China
3 College of Science, Northeast Forestry University, Harbin 150000, China
下载:  全 文 ( PDF ) ( 5367KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以棉花为原料,采用硫酸水解法制备棒状结构的纤维素纳米晶悬浮液,并通过蒸发诱导自组装过程制备胆甾型纤维素手性膜,系统研究了外部环境(如真空度和磁场)对纳米纤维素悬浮液蒸发自组装形成的胆甾型纤维素手性膜的结构与性能的影响。结果表明,采用硫酸水解制得的纤维素纳米晶的粒径为161.6 nm,改变蒸发自组装外部环境真空度对所得胆甾型纤维素膜的螺距有明显影响。随着真空度的增大,所得胆甾型纤维素手性膜的螺距增大,反射光波长红移。在此基础上,通过外加磁场并改变蒸发过程的真空环境发现,真空度越大,磁场对胆甾型纤维素的螺距调节效果越显著。因此,可通过磁场-真空协同作用调控所影响区域的胆甾相结构的螺距大小,进而调制胆甾型纤维素膜的结构色。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于佳酩
王士鹏
董娅慧
王雨梦
李玉
程倩
关键词:  纳米纤维素  胆甾型液晶相  磁场-真空协同  局部调控    
Abstract: In this work, the suspension of rod-like cellulose nanocrystals were prepared by sulfuric acid hydrolysis method using cotton as raw material, and the cholesteric cellulose chiral film was formed via evaporation-induced self-assembly (EISA) process. Furthermore, the effects of external enviroment, such as vacuum degree and magnetic field, on the structure and performance of cholesteric cellulose chiral film during EISA process were investigated systematically. The results show that the particle size of crystalline nanocellulose prepared by sulfuric acid hydrolysis is 161.6 nm; the vacuum degree has a significant effect on the pitch of cholesteric cellulose, and with the vacuum degree increasing, the pitch of the obtained cholesteric cellulose increases and the wavelength of reflected light generated bathochromic shift. Moreover, it is found that the greater degree of vacuum is, the more significant the effect of the magnetic field on the pitch adjustment of cholesteric cellulose is, by applying a magnetic field and changing the vacuum environment during the evaporation process. Thus, the structural color of cholesteric cellulose membranes can be modulated by regulating the cholesteric helical pitch of the affected region through the synergy of magnetic field and vacuum.
Key words:  cellulose nanocrystal    cholesteric liquid crystal phase    magnetic field-vacuum synergy    local modulation
发布日期:  2022-06-09
ZTFLH:  O629.1  
基金资助: 中央高校基本科研业务费专项资金(2572019BB06);黑龙江省自然科学基金(HL2019E002)
通讯作者:  chengqian66@163.com   
作者简介:  于佳酩,2018年6月毕业于东北林业大学材料化学专业,获学士学位。2021年6月毕业于东北林业大学林产化学加工工程专业,获硕士学位,期间主要研究方向是纤维素基功能材料。现博士就读于哈尔滨工业大学化工与化学学院,主要研究方向为丙交酯的合成。
程倩,东北林业大学副教授,硕士研究生导师,2002年本科毕业于河南师范大学化学与环境科学学院,2005年硕士毕业于上海大学,2013年博士毕业于哈尔滨工业大学。从事生物医用纳米/陶瓷材料和生物质新能源材料的研究。截至目前,已在SCI期刊发表学术论文15余篇,其中入选ESI前百分之一10年高被引论文一篇。并获授权国家发明专利两项。
引用本文:    
于佳酩, 王士鹏, 董娅慧, 王雨梦, 李玉, 程倩. 基于磁场-真空协同作用局部调制胆甾型纤维素[J]. 材料导报, 2022, 36(11): 20120091-6.
YU Jiaming, WANG Shipeng, DONG Yahui, WANG Yumeng, LI Yu, CHENG Qian. Local Modulation of Cholesteric Cellulose Nanocrystals Based on Magnetic Field-Vacuum Synergistic Effect. Materials Reports, 2022, 36(11): 20120091-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120091  或          http://www.mater-rep.com/CN/Y2022/V36/I11/20120091
1 Li W, Xu M, Ma C, et al. ACS Applied Materials & Interfaces, 2019, 11(26), 23512.
2 Xiong R, Yu S, Smith M J, et al. ACS Nano, 2019, 13, 9074.
3 Grey P, Fernandes S N, Gaspar D, et al. Advanced Functional Mate-rials, 2019, 29(21), 1805279.
4 Zheng H Z, Li W R, Li W, et al. Advanced Materials, 2018, 30(13), 1705948.
5 Zhang R, Chu G, Vasilyev G, et al. ACS Applied Materials & Interfaces, 2019, 11(21), 19324.
6 Cheng Z, Ye H, Cheng F, et al. Advanced Materials Interfaces, 2019, 6(7), 1802010.
7 Qu D, Zheng H, Jiang H, et al. Advanced Optical Materials, 2019, 7(7), 1801395.
8 Jin K X, Jiang Z H, Liu X E, et al. Materials Reports A: Review Papers, 2019, 33(9), 2997(in Chinese).
金克霞, 江泽慧, 刘杏娥, 等. 材料导报:综述篇,2019,33(9),2997.
9 Huang H T, Liu C, Ma C, et al. Materials Reports A: Review Papers, 2016, 30(11), 75(in Chinese).
黄海涛, 刘旸, 马超, 等. 材料导报:综述篇, 2016, 30(11), 75.
10 Mitov M. Advanced Materials, 2012, 24(47), 6260.
11 Zhang F, Wang D, Qin H, et al. ACS Applied Materials & Interfaces, 2019, 11(14), 13114.
12 Rofouie P, Galati E, Sun L, et al. Advanced Functional Materials, 2019, 29(43), 1905552.
13 Lagerwall J P F, Schutz C, Salajkova M, et al. NPG Asia Materials, 2014, 6(12), e80.
14 Qu D. Chiral optical properties and applications of crystalline nanocellulose. Ph.D. Thesis, Jilin University, China, 2018(in Chinese).
屈丹. 晶态纳米纤维素的手性光学性质及应用研究. 博士学位论文, 吉林大学, 2018.
15 Yao K, Meng Q, Bulone V, et al. Advanced Materials, 2017, 29(28), 1701323.
16 Mu X Y, Gray D G.Langmuir, 2014, 30(31), 9256.
17 Frka-Petesic B, Radavidson H, Jean B, et al. Advanced Materials, 2017, 29(11), 1606208.
18 Frka-Petesic B, Guidetti G, Kamita G, et al. Advanced Materials, 2017, 29(32), 1701469.
19 Beck S, Bouchard J, Chauve G, et al. Cellulose, 2013, 20(3), 1401.
20 Wang H, Du H S, Liu K, et al. Carbohydrate Polymers, 2021, 266, 118107.
21 Guidetti G, Atifi S, Vignolini S, et al. Advanced Materials, 2016, 28(45), 10042.
22 Chen T, Zhao Q, Meng X, et al. ACS Nano, 2020, 14(8), 9440.
23 Kim H C, Kim J W, Zhai L, et al. Cellulose, 2019, 26(10), 5821.
24 Dumanli A G, Kooij H M, Kamita G, et al. ACS Applied Materials & Interfaces, 2014, 6(15), 12302.
25 He Y D, Zhang Z L, Xue J, et al. ACS Applied Materials & Interfaces, 2018, 10(6), 5805.
[1] 魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
[2] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[3] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed