Please wait a minute...
材料导报  2020, Vol. 34 Issue (21): 21081-21092    https://doi.org/10.11896/cldb.19090014
  无机非金属及其复合材料 |
银纳米线及其透明导电膜的研究进展
周扬州1, 钱磊2, 章婷1,*
1 北京理工大学光电学院,北京 100081;
2 中国科学院宁波材料技术与工程研究所,宁波 315201
Research Progress of Silver Nanowires and Transparent Conductive Films
ZHOU Yangzhou1, QIAN Lei2, ZHANG Ting1,
1 School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
2 Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
下载:  全 文 ( PDF ) ( 8704KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,透明导电薄膜在光电器件中得到广泛的应用,是触控显示、有机发光二极管(OLED)、薄膜太阳能电池等器件的重要组成部分。目前氧化铟锡(ITO)作为透明电极在平板显示以及各种电子设备应用中处于垄断地位,但其本身存在陶瓷脆性、弯折易受损、反应温度高及易泛黄等缺点,严重阻碍了电子器件向小型化和柔性方向发展,因此迫切需要一种新的导电材料能够代替ITO,从而应用到柔性设备中。而基于银纳米线(Ag nanowires, AgNWs)的透明导电膜凭借良好的透光度、高导电性、低成本以及柔性可弯折等优点,有望成为ITO导电薄膜最具潜力的替代品。短短几年内,基于AgNWs透明导电膜的制备工艺和器件结构不断得到优化,并吸引越来越多研究者的关注。
AgNWs的长径比及其分散液的粘度直接影响透明导电膜的光学和电学性能。对于高长径比的AgNWs,只需较少数量即可搭建出高导电性的AgNWs网络。这样可有效降低使用高长径比AgNWs制得的导电膜的散射,也可大幅提升其透过性。其次,分散液是影响AgNWs导电膜性能的另一个不可忽视的因素,其分散性和粘度直接影响着薄膜的均匀性及薄膜与基底的粘附性,因此获得高性能的分散液是制备AgNWs透明导电膜的关键。此外,由于AgNWs之间的接触电阻非常高,制备的导电膜的方块电阻非常大,这就需要对薄膜进行相应的后处理来降低其方阻。
本文重点综述了国内外AgNWs的合成方法,总结了高透明AgNWs导电膜在导电分散液制备、薄膜制备、后处理等工艺上的研究进展,并简述了AgNWs透明导电膜在光电器件中的应用。最后,对AgNWs柔性透明导电膜在未来的发展趋势进行了展望,以期为制备高性能的AgNWs透明导电膜提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周扬州
钱磊
章婷
关键词:  银纳米线  透明导电膜  触控显示  有机发光二极管(OLED)  太阳能电池    
Abstract: In recent years, the transparent conductive films with high conductivity are widely used in optoelectronic devices. They are the important components of touch display, organic light emitting diode (OLED), thin film solar cells and the like. At present, indium tin oxide (ITO) as a transparent electrode plays a monopoly role in flat panel display and various electronic equipment applications, however, ITO itself has some shortcomings such as brittleness of ceramics, vulnerability to bending and damage, high preparation cost, high reaction temperature and yellowing, which seriously hinder the development of electronic devices towards miniaturization and flexibility. Therefore, a new conductive material is urgently needed to replace ITO and applied to flexible devices. The transparent conductive film based on silver nanowires (AgNWs) will become the most potential substitute for ITO conductive film due to its good transmittance, high conductivity, low cost and flexible bendability. In the past few years, the fabrication process and device structure of transparent conductive films based on AgNWs have been continuously optimized, which has attracted more and more attention of researchers.
The aspect ratio of the AgNWs and the viscosity of the conductive dispersion directly affect the optical and electrical properties of the transparent conductive film. For AgNWs with high aspect ratio, only a small number of AgNWs is needed to build a highly conductive AgNWs network. The scattering of the prepared film layer can be effectively reduced, and its permeability can be greatly improved. The AgNWs dispersion is another non-negligible factor affecting the AgNWs conductive film. The dispersion and viscosity of the conductive dispersion directly affects the uniformity of the film. Therefore, obtaining high performance dispersion is the key to prepare AgNWs transparent conductive film. In addition, since the contact resistance between the AgNWs is huge, causing the sheet resistance of the prepared conductive film is also extremely large, so a corresponding post-treatment process of the film is required to reduce the square resistance of the film.
In this paper, the synthesis methods of AgNWs at home and abroad are summarized. The research progress of AgNWs transparent conductive silver films in dispersion preparation, film preparation and post-treatment is summarized. The application of AgNWs transparent conductive silver films in optoelectronic devices is also described. Finally, the development trend of AgNWs flexible transparent conductive film in the future is prospected in order to provide reference for the preparation of high performance AgNWs transparent conductive film.
Key words:  silver nanowires (AgNWs)    transparent conductive film    touch display    organic light emitting diode (OLED)    solar cells
               出版日期:  2020-11-10      发布日期:  2020-11-17
ZTFLH:  TB31  
作者简介:  周扬州,北京理工大学光电学院硕士研究生,在章婷教授的指导下进行研究,目前主要研究领域为银纳米线及其透明导电膜的应用。
章婷,北京理工大学光电学院教授、硕士研究生导师,主要从事有机及纳米复合材料光电薄膜器件的研究,包括光伏器件、发光显示以及柔性光电薄膜器件的产业化应用。近年来,在Energy Environ. Sci.、Nanotechnology、Journal of Applied Physics等国际知名期刊上发表文章30多篇,主持及参与国家自然科学基金项目2项,参与国家科技部科技支撑项目1项。
引用本文:    
周扬州, 钱磊, 章婷. 银纳米线及其透明导电膜的研究进展[J]. 材料导报, 2020, 34(21): 21081-21092.
ZHOU Yangzhou, QIAN Lei, ZHANG Ting1,. Research Progress of Silver Nanowires and Transparent Conductive Films. Materials Reports, 2020, 34(21): 21081-21092.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090014  或          http://www.mater-rep.com/CN/Y2020/V34/I21/21081
[1] Madaria A R, Zhou C, Kumar A.Nanotechnology, 2011, 22(24), 245201.
[2] Hiroki Maeda, Hiroyoshi Nakajima, Tsuyoshi Sekitani.Nature Materials, 2009, 8(6), 494.
[3] Raissi M, Vedraine S, Garuz R, et al.Solar Energy Materials and Solar Cells, 2017, 160, 494.
[4] Wang Minqiang, Ding Lei, Igbari Femi, et al.Solar Energy, 2016, 130, 273.
[5] Cui Y, Connor S T, Lee J Y, et al.Nano Letters,2008, 8(2), 689.
[6] Hu W L, Niu X F, Zhao R, et al. Applied Physics Letters, 2013, 102, 38.
[7] Wang J H, Zhao X J, Li J F, et al.ACS Macro Letters, 2014, 3, 529.
[8] Amjadi M, Pichitpajongkit A, Lee S, et al.ACS Nano, 2014, 8, 5154.
[9] Ellmer K.Nature Photonics, 2012, 6(12), 809.
[10] Hecht D S, Hu L, Irvin G.Advanced Materials, 2011, 23(13), 1482.
[11] Sun Y G, Mayers B, Herricks T, et al.Nano Letters, 2003, 3(7), 955.
[12] Tang Q T, Shen H L, Zheng C F, et al.Journal of Nanjing University of Aeronautics and Astronautics, China, 2015(5), 659(in Chinese).
唐群涛, 沈鸿烈, 郑超凡, 等.南京航空航天大学学报, 2015(5), 659.
[13] Coskun S, Aksoy B, Unalan H E, et al.Crystal Growth & Design, 2011, 11(11), 4963.
[14] Zhang Y J, Duan T, Zhu W K.Precious Metals, 2014(1), 6(in Chinese).
张玉娟, 段涛, 竹文坤.贵金属, 2014(1),6.
[15] Li B, Ye S R, Stewart I E, et al.Nano Letters, 2015, 15, 6722.
[16] Zhang K L, Du Y G,Organic Electronics. 2015, 26, 380.
[17] Xia X D, Yang B C, Zhang X, et al.Journal of Functional Materials,2016(5), 5091(in Chinese).
夏兴达, 杨兵初, 张祥, 等.功能材料, 2016(5), 5091.
[18] Niu Z Q, Cui F, Kuttner E, et al.Nano Letters, 2018, 18(8), 5329.
[19] Xia Y N, Sun Y G, Mayers B, et al.Nano Letters, 2002, 2(2), 165.
[20] Sun Y G, Xia Y N.Advanced Materials, 2002, 14(11), 833.
[21] Sun Y G, Xia Y N, Mayers B, et al.Chemistry of Materials, 2002, 14(11), 4736.
[22] Lee J H, Lee P, Lee D J, et al.Crystal Growth & Design, 2012, 12, 5598.
[23] Bhattacharyya S, Saha S K, Chakravorty D, et al.Applied Physics Letters, 2000, 77(23), 3770.
[24] Adhyapak P, Vijayamohanan K, Adhyapak P V.Materials Letters, 2004, 58(7-8), 1168.
[25] Cui S, Liu Y, Yang Z, et al.Materials & Design, 2007, 28(2), 722.
[26] Pal A, Shah S, Devi S. Materials Chemistry and Physics, 2009, 114(2), 530.
[27] Tsuji M, Hashimoto M, Nishizawa Y, et al.Chemistry-A European Journal, 2005 11(2), 440.
[28] Zhu J J, Qiu Q F, Zhang J R, et al.Inorganic Chemistry Communications, 2002, 5(4), 242.
[29] Zou K, Zhang X H,Wu S K. Acta Chimica Sinica, 2004(18),1771(in Chinese).
邹凯, 张晓宏, 吴世康, 等.化学学报, 2004(18),1771.
[30] Liang H, Wang K, Kundu S, et al.Journal of Colloid and Interface Science, 2010, 344(2), 334.
[31] Peng S, Cao F F, Jin L M, et al.Transactions of Materials and Heat Treatment, 2017(5), 25(in Chinese).
彭寿,操芳芳,金良茂, 等.材料热处理学报, 2017(5), 25.
[32] Kodama Daisuke, Saito Hirotoshi, Sato Kimitaka. U.S. patent application, US20170015857, 2017.
[33] 董立华. 中国专利, CN201710957515, 2017.
[34] Kim T Y, Kim Y W, Lee H S, et al. Advanced Functional Materials, 2013, 23(10), 1250.
[35] Kumar A B V K, Bae C W,Piao L,et al.Materials Research Bulletin, 2013,48,2944.
[36] 谷小虎,丁轶,黄友科, 等.中国专利, CN103627255A, 2014.
[37] Song J, Zeng H.Angewandte Chemie International Edition, 2015, 54(34), 9760.
[38] Sachse C, Müller-Meskamp L, Bormann L, et al.Organic Electronics, 2013, 14(1), 143.
[39] Duraisamy N, Hong S J, Choi K H.Chemical Engineering Journal,2013, 225, 887.
[40] Hauger T C, Al-Rafia S M I, Buriak J M.ACS Applied Materials & Interfaces, 2013, 5(23), 12663.
[41] Song M, You D S, Lim K, et al.Advanced Functional Materials, 2013, 23(34), 4177.
[42] Hu L, Kim H S, Lee J Y, et al.ACS Nano, 2010, 4(5), 2955.
[43] Madaria A R, Kumar A, Ishikawa F N, et al.Nano Research, 2010, 3 (8), 564.
[44] Lee S J, Kim Y H, Kim J K, et al.Nanoscale, 2014, 6(20), 11828.
[45] Jia Y G, Chen C, Dan J, et al.ACS Applied Materials & Interfaces, 2016, 8(15), 9865.
[46] Li Y, Cui P, Wang L, et al.ACS Applied Materials & Interfaces, 2013, 5(18),9155.
[47] Lu H F, Zhang D, Cheng J Q, et al. Advanced Functional Materials, 2015, 25(27), 4211.
[48] Areum Kim, Yulim Won, Kyoohee Woo, et al.ACS Nano, 2013, 7(2), 1081.
[49] Tsai W C, Thomas S R, Hsu C H, et al.Journal of Materials Chemistry A, 2016, 4, 6980.
[50] Liu C H, Yu X.Nanoscale Research Letters, 2011, 6, 75.
[51] Chen S J, Song L, Tao Z, et al.Organic Electronics, 2014, 15(12), 3654.
[52] Nathaniel D G, Joybelle L, Magdaleno V J, et al.Materials Science Forum, 2017,4382(890), 89.
[53] Yang K C, Sung D I, Shin Y J, et al.Nanotechnology, 2019, 30(28),285702.
[54] Lee J Y, Peumans P, Connor S T, et al. Nano Letters, 2010, 10(4),1276.
[55] Xiong W W, Liu H L, Chen Y Z, et al. Advanced Materials, 2016, 28(33), 7167.
[56] Moon H J, Won P, Ko S H, et al.Nanotechnology, 2016, 27(29), 295201.
[57] Lee J H, Lee P, Lee H B, et al.Advanced Functional Materials, 2013, 23(34), 4171.
[58] Alamgir Khalid, Won Phillip, Bari Bushra, et al.Journal of Materials Chemistry A, 2016, 4(29), 11365.
[59] Singh Manjeet, Rana Tanka, Kim Seong Yeon, et al.ACS Applied Mate-rials & Interfaces, 2016, 8(20), 12764.
[60] Kim S, Hwang B.Materials & Design, 2018, 160, 572.
[61] Li J, Ye T, Chen S F, et al.Scientific Reports, 2017, 7(1), 16468.
[62] Lian L, Xin X, Dong D, et al.Organic Electronics, 2018, 60,9.
[63] Lian L, Dong D, Yang S, et al.ACS Applied Materials & Interfaces, 2017, 9(13), 11811.
[64] Zhang K L, Du Y G, Wang Z. Precious Metals, 2015(z1),82.
张楷力,堵永国,王震.贵金属, 2015(z1),82.
[65] Bergin S M, Chen Y H, Rathmell A R, et al.Nanoscale, 2012,4(6), 1996.
[66] Fu H, Yang X, Yu A,et al.Particuology, 2013,11(4), 428.
[67] Whitcomb D R, Clapp A R, Bühlmann P, et al.Crystal Growth & Design, 2016, 16(4), 1861.
[68] Wiley B, Herricks T, Sun Y, et al.Nano Letters, 2004, 4(9), 1733.
[69] Gou L, Chipara M, Zaleski J M.Chemistry of Materials, 2007,19(7), 1755.
[70] Zhang Y, Guo J, Xu D, Sun Y, et al.ACS Applied Materials & Interfaces, 2017, 9(30), 25465.
[1] 赵琦, 沈晓明, 符跃春, 何欢. 光子增强热电子发射(PETE)太阳能电池的研究进展[J]. 材料导报, 2020, 34(Z1): 1-6.
[2] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[3] 阎森飚, 徐键. CZTS薄膜太阳能电池无镉缓冲层材料的研究进展[J]. 材料导报, 2020, 34(7): 7045-7052.
[4] 董丽卡, 丁明乐, 庄志山, 夏广波, 邓倩囡, 邱琳琳, 杜平凡. 柔性及纺织基钙钛矿太阳能电池的研究进展[J]. 材料导报, 2020, 34(7): 7053-7060.
[5] 茹鹏斌, 毕恩兵, 陈汉. 无机电荷传输层界面修饰制备稳定钙钛矿太阳能电池[J]. 材料导报, 2020, 34(18): 18003-18008.
[6] 赵思宇, 张祥, 卢伶, 张义, 赵青华. 具有聚集诱导发光性质的热活化延迟荧光材料综述[J]. 材料导报, 2020, 34(17): 17155-17167.
[7] 于嫚. 聚焦钙钛矿光伏器件中慢速动力学机制研究进展[J]. 材料导报, 2020, 34(15): 15059-15062.
[8] 杨飞, 周丹, 秦元成, 徐海涛, 张余宝, 张芹, 谢宇, 李明俊. 有机太阳能电池电子传输层材料研究进展[J]. 材料导报, 2020, 34(11): 11081-11089.
[9] 孙佳南,许辉. 热激发延迟荧光分子的受体基团研究进展[J]. 材料导报, 2020, 34(1): 1135-1145.
[10] 周理想, 黄仕华, 吴锋民. 异质结太阳能电池的仿真模拟研究和界面态密度对效率的影响[J]. 材料导报, 2019, 33(Z2): 28-31.
[11] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[12] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[13] 蒋青松, 陈俊文, 杨子莹, 李文波, 程文杰, 胡光. 利用电沉积-溶剂热-硒化技术提高基于二硒化镍对电极的染料敏化太阳能电池的填充因子[J]. 材料导报, 2019, 33(24): 4040-4045.
[14] 季鑫, 张朝民. CIGS叠层太阳能电池的中间层及稳定性的研究进展[J]. 材料导报, 2019, 33(23): 3915-3920.
[15] 杨秀钰, 陈诺夫, 张航, 陶泉丽, 徐甲然, 陈梦, 陈吉堃. 对非晶硅薄膜进行快速磷扩散以获得本征薄层异质结[J]. 材料导报, 2019, 33(20): 3353-3357.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed