Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7045-7052    https://doi.org/10.11896/cldb.19020106
  无机非金属及其复合材料 |
CZTS薄膜太阳能电池无镉缓冲层材料的研究进展
阎森飚, 徐键
宁波大学信息科学与工程学院,宁波 315211
Development of Cd-free Buffer Materials for CZTS Thin-film Solar Cells
YAN Senbiao, XU Jian
College of Information Science & Engineering, Ningbo University, Ningbo 315211, China
下载:  全 文 ( PDF ) ( 2962KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Cu(In,Ga)Se2 (CIGS)薄膜太阳能电池是单结转换效率最高(~22.6%)的光伏器件,但In、Ga是稀缺元素,从而限制了CIGS电池的产业化。新型材料Cu2ZnSnS4 (CZTS)是结构与光电性能均与CIGS十分相似的直接带隙半导体材料,它在CIGS器件结构中可替代CIGS吸收层,并得到新型CZTS薄膜太阳能电池。与CIGS相反,CZTS的原料丰富、无毒。大量研究表明,CZTS薄膜太阳能电池具有较高的转换效率和良好的稳定性,且可采用低成本、非真空的溶液法薄膜沉积技术来制造,因此CZTS器件是一种低成本、环境友好、极具产业化前景的薄膜太阳能电池。
   CZTS器件具有与CIGS器件一样的堆层结构{SLG/Mo/CZTS/CdS/i-ZnO/n-ZnO},目前转换效率最高(~12.6%)的CZTS器件仍沿用CIGS器件的CdS缓冲层,因而大规模生产与应用中存在高毒重金属镉污染的危险,寻找能替代CdS的无镉缓冲层材料来消除潜在的镉污染问题十分必要。此外,与高效率的{CIGS/CdS}器件相比,{CZTS/CdS}器件界面的能带匹配可能并不是最优,CZTS器件的转换效率还远不如CIGS器件,因此需要寻找新的无镉缓冲层材料。在确定新缓冲层材料时,必须考虑{CZTS/新缓冲层}界面的能级对齐效应。
   CIGS和CZTS器件的缓冲层新材料基本上可归纳为3种半导体材料:硫化物、硫氧化物、氧化物。这些材料的薄膜均可用化学浴(CBD)法等多种方法来制备。材料选取很大程度上取决于其与CZTS或CIGS吸收层接触所形成界面上的导带带阶情况,因为导带带阶对器件性能参数有很大的影响。大的正导带带阶(尖刺状带阶)对少子(电子)收集存在一个势垒而降低短路电流密度Jsc;相反,负导带带阶(断崖状带阶)导致缓冲层与吸收层界面上的复合增大而降低了开路电压Voc;理想情况是器件有一个小(0~0.4 eV)的正导带带阶(尖刺状带阶),正如在使用CdS缓冲层的CIGSSe器件中所发现的那样。
   为了研发低成本、环境友好的CZTS电池器件的新型缓冲层材料,本文综述了CZTS和CIGS器件的无镉缓冲层材料的研究进展,讨论了无镉缓冲层材料的选用条件,以及多种硫化物(如ZnS和In2S3)、硫氧化物(如Zn(S,O)和In(S,O,OH))、氧化物(如ZnO、TiO2、Zn1-xMgxOy和Zn1-x-SnxOy等)薄膜作为CZTS缓冲层的性能特点(特别是它们的导带带阶)以及存在的问题,探讨了其发展方向。对于含硒CZTSSe器件,In2S3、Zn(S,O)是良好的无镉缓冲层材料,而对于更环保、低成本的全硫CZTS器件,Zn1-xMgxOy和Zn1-xSnxOy可提供良好性能的缓冲层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阎森飚
徐键
关键词:  薄膜太阳能电池  无镉  缓冲层  铜锌锡硫    
Abstract: Cu(In,Ga)Se2 (CIGS) thin-film solar cell is the device with highest power conversion efficiency (~22.6%) of single junction. However, In and Ga in CIGS are scarce elements resource so that industrialization of CIGS solar cells are restricted. New material Cu2ZnSnS4 (CZTS) is very similar to CIGS in crystal structure and optoelectronic properties, both of them are the semiconductors with direct band gaps. CZTS thin film could replace CIGS absorber layer in CIGS solar cells, leading to a new CZTS thin-film solar cell. Adverse to the CIGS absorber, CZTS material is composed of earth-abundant non-toxic elements, only earth-abundant elements. Many studies indicate that CZTS solar cells with higher conversion efficiency and better stability could be fabricated by all solution-processing techniques. Therefore, CZTS thin-film solar cells should be low-cost environment-friendly industrialization-promising thin-film solar cells.
CZTS solar cell is the same device structure as the CIGS cell, with the structure {SLG/Mo/CZTS/CdS/i-ZnO/n-ZnO}. At present, the CZTS cell with the highest conversion efficiency (~12.6%) are still used the CdS buffer layer in CIGS device, so that the industrialization processes and photovoltaic applications of CZTS cells could be faced to the danger of high-toxic heavy-metal Cd pollution. It is necessary to find Cd-free buffer materials to replace CdS for elimination of potential Cd pollution. Besids, compared to high efficiency {CIGS/CdS} cells, {CZTS/CdS} cells might not be optimized in band-alignment, so the conversion efficiency of CZTS cells is much worse than that of CIGS cells. New Cd-free buffer materials are required. When determining the new buffer materials, it must be taken into account the effect of the band-alignment effect of the {CZTS/new buffer layer} interface on device performance.
There are 3 kinds of new materials for Cd-free buffer layers in CIGS and CZTS cells: sulfides, oxysulfide, oxides semiconductors. Their thin films could be prepared by chemical bath deposition (CBD) and other techniques. The selection of materials mostly depend on the conduction band offset on the interface between the material and CZTS or CIGS absorber, since the conduction band offset mostly affects the performance parameters of the cell. A large positive conduction band offset (spike) presents a barrier for minority carrier (electron) collection, reducing short-circuit current density Jsc. By contrast, negative offset (cliff) leads to increased recombination at the buffer-absorber interface, thereby reducing open-circuit voltage Voc. Ideally, the device would have a small 0—0.4 eV conduction-band offset spike, as found in CIGSSe devices employing a CdS buffer.
In order to develop new buffer materials for the low-cost environment-friendly CZTS cells, the present paper reviews the development of Cd-free buffer materials for CZTS and CIGS cells. The selection conditions of Cd-free buffers, the properties and problems of some sulfides (such as ZnS and In2S3), oxysulfides (such as Zn(S,O), In(S,O,OH)) and oxides (such as ZnO, Zn1-xMgxOy, Zn1-xSnxOy)as the buffer in CZTS cell, especially their conduction band offsets, are discussed. For Se-contained CZTSSe devices, In2S3 and Zn(S,O) might be better for Cd-free buf-fer; for the more environment-friendly and low-cost all-sulfur CZTS devices, oxides Zn1-xMgxOy and Zn1-xSnxOy could be provided better buffer properties.
Key words:  thin-film solar cells    Cd-free    buffer layer    CZTS
                    发布日期:  2020-04-10
ZTFLH:  TQ174.75  
基金资助: 宁波市自然科学基金(2016A610067);宁波大学王宽诚幸福基金
通讯作者:  xujian@nbu.edu.cn   
作者简介:  阎森飚,2016年6月毕业于西北师范大学,获得工学学士学位。现为宁波大学信息科学与工程学院硕士研究生,在徐键教授的指导下进行研究。目前主要研究的领域为新型无镉缓冲层的环保型CZTS薄膜太阳能电池。
徐键,宁波大学信息科学与工程学院教授、硕士研究生导师。1988年7月本科毕业于厦门大学物理系,1994年5月在浙江大学材料科学与工程系无机非金属材料专业取得博士学位,之后留校任讲师。1997-2003年分别在葡萄牙高等技术学院、爱尔兰都柏林城市大学、英国诺丁汉特仑特大学进行博士后和Research Follow工作。主要从事溶胶-凝胶材料与微纳光子材料、器件的研究工作。
引用本文:    
阎森飚, 徐键. CZTS薄膜太阳能电池无镉缓冲层材料的研究进展[J]. 材料导报, 2020, 34(7): 7045-7052.
YAN Senbiao, XU Jian. Development of Cd-free Buffer Materials for CZTS Thin-film Solar Cells. Materials Reports, 2020, 34(7): 7045-7052.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19020106  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7045
1 Jackson P, Wuerz R, Hariskos D, et al. Physica Status Solidi (RRL), 2016, 10, 583.
2 Zhou M, Gong Y, Xu J, et al. Journal of Alloys & Compounds, 2013, 574, 272.
3 Wang W, Winkler M T, Gunawan O, et al. Advanced Energy Materials, 2014, 4(7), 1301614.
4 Sun K, Yan C, Liu F, et al. Advanced Energy Materials,2016, 6, 1600046.
5 Bär M, Muffler H, Fischer C H, et al. Progress in Photovoltaics: Research & Applications,2002, 10, 173.
6 Graetzel M, Janssen R A J, Mitzi D B, et al. Nature,2012, 488(16), 304.
7 Naghavi N, Abou-Ras D, Allsop N, et al. Progress in Photovoltaics: Research & Applications,2010, 18, 411.
8 Hariskos D, Spiering S, Powalla M. Thin Solid Films,2005, 480-481, 99.
9 Katagiri H, Jimbo K, Tahara M, et al. Materials Research Society Symposium Proceedings,2009, 1165, M04.
10 Ericson T, Scragg J J, Hultqvist A, et al. IEEE Journal of Photovoltaics,2014, 4, 465.
11 Neuschitzer M, Lienau K, Guc M, et al. Journal of Physics D: Applied Physics,2016, 49, 125602.
12 Hironiwa D, Matsuo N, Sakai N, et al. Japanese Journal of Applied Phy-sics,2014, 53, 106502.
13 Barkhouse D A R, Haight R, Sakai N, et al. Applied Physics Letters,2012, 100, 193904.
14 Siebentritt S. Solar Energy,2004, 77, 767.
15 Minemoto T, Matsui T, Takakura H, et al. Solar Energy Materials & Solar Cells,2001, 67, 83.
16 Chen S, Gong X G, Walsh A, et al. Applied Physics Letters,2010, 96, 021902.
17 Cao Q, Gunawan O, Copel M, et al. Advanced Energy Materials,2011, 1, 845.
18 Furlong M J, Froment M, Bernard M C, et al. Journal of Crystal Growth,1998, 193, 114.
19 Bhattacharya R N, Contreras M A, Egaas B, et al. Applied Physics Letters,2006, 89, 253503.
20 Nakada T, Izutani M M. Japanese Journal of Applied Physics,2002, 41, L165.
21 Kim J, C. Park, S.M. Pawar, et al. Thin Solid Films,2014, 566, 88.
22 Nguyen M, Ernits K, Tai K F, et al. Solar Energy,2015, 111, 344.
23 Haight R, Barkhouse R A D, Gunawan O, et al. Applied Physics Letters,2011, 98, 253502.
24 Nagoya A, Asahi R, Kreese G. Journal of Physics: Condensed Matter,2011, 23, 404203.
25 Naghavi N, Spiering S, Powalla M, et al. Progress in Photovoltaics: Research & Applications,2003, 11, 437.
26 Barreau N, Bernede J C, Marsilla S, et al. Thin Solid Films,2003, 431-432, 326.
27 Abou-Ras D, Kostorz G, Hariskos D, et al. Thin Solid Films,2009, 517, 2792.
28 Schoneberg J, Richter M, Ohland J, et al. Thin Solid Films,2017, 633, 243.
29 Spiering S, Nowitzki A, Kessler F, et al. Solar Energy Materials & Solar Cells,2016, 144, 544.
30 Hariskos D, Ruckh M, Rühle U, et al. Solar Energy Materials & Solar Cells,1996, 41/42, 345.
31 Huang C H, Li S S, Shafarman W N, et al. Solar Energy Materials & Solar Cells,2001, 69, 131.
32 Bayon R, Guillen C, Martinez M A, et al. Journal of Electrochemistry Society,1998, 145, 2775.
33 Sáez-Araoz R, Ennaoui A, Kropp T, et al. Physica Status Solidi (A),2008, 205(10), 2330.
34 Shin D H, Kim J H, Kim S T, et al. Solar Energy Materials & Solar Cells,2013, 116, 76.
35 Contreras M A, Nakada T, Hong M, et al. In: Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion. Osaka, Japan, 2003,pp.570.
36 Friedlmeier T M, Jackson P, Bauer A, et al. IEEE Journal of Photovoltaics,2015, 5 (5), 1487.
37 Grenet L, Grondin P, Coumert K, et al. Thin Solid Films,2014, 564, 375.
38 Platzer-Bjorkman C, Lu J, Kessler J, et al. Thin Solid Films,2003, 431-432, 321.
39 Ohtomo A, Kawasaki M, Koida T, et al. Applied Physics Letters,1998, 72(19), 2466.
40 Glatzel T, von Roon S, Sadeswasser S, et al. In: Proceedings of 17th European Photovoltaic Solar Energy Conference.Munich, 2001,pp.1031.
41 Minemoto T, Hashimoto Y, Satoh T, et al. Journal of Applied Physics,2001, 89(12), 8327.
42 Törndahl T, Platzer-Björkman C, Kessler J, et al. Progress in Photovol-taics: Research & Applications,2007, 15, 225.
43 Lee C S, Kim S, Shin Y M, et al. RSC Advance,2014, 4, 36784.
44 Hiroi H, Iwata Y, Adachi S, et al. IEEE Journal of Photovoltaics, 2016, 6(3), 760.
45 Hultqvist A, Platzer-Björkman C, Törndahl T, et al. In: Proceedings of the 22nd European Photovoltaic Solar Energy Conference. Munich, 2007, pp. 2381.
46 Salomé P M P, Keller J, Törndahl T, et al. Solar Energy Materials & Solar Cells,2017, 159, 272.
47 Reinhard P, Pianezzi F, Bissig B, et al. IEEE Journal of Photovoltaics,2015, 5 (2), 656.
48 Lindahl J, Wätjen J T, Hultqvist A, et al. Progress in Photovoltaics: Research & Applications,2013, 21, 1588.
49 Kapilashrami M, Kronawitter C X, Törndahl T, et al. Physical Chemistry Chemical Physics,2012, 14, 10154.
50 Minemoto T, Okamoto A, Takakura H. Thin Solid Films,2011, 519, 7568.
51 Scheer R, Wilhelm H. In: Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC). Seattle,USA,2011, pp.002500.
52 Ericson T, Larsson F, Törndahl T, et al. Solar RRL,2017, 1, 1700001.
53 Hibberd C J, Chassaing E, Liu W. et al. Progress in Photovoltaics: Research & Applications,2010, 18, 434.
54 Bär M, Schubert B A, Marsen B, et al. Applied Physics Letters,2011, 99, 222105.
55 Covei M, Bogatu C, Perniu D, et al. In: Proceedings of the International Semiconductor Conference, CAS 2018. Sinaia, Romania, 2018, pp.311.
56 Gao J, Xu J. Tao W, et al. Journal of Chinese Ceramic Society, 2015, 43(12), 1761(in Chinese).
高金凤,徐键,陶卫东,等. 硅酸盐学报 2015, 43(12), 1765.
57 Houshmand M, Esmaili H, Hossein Zandi M, et al. Materials Letters,2015, 157, 123.
[1] 王璐, 郭杰, 郝瑞亭, 顾康, 刘斌, 王远方舟, 孙帅辉. ZnS溅射功率对Cu2ZnSnS4薄膜附着性及太阳电池性能的影响[J]. 材料导报, 2019, 33(Z2): 24-27.
[2] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[3] 刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
[4] 彭晓文, 陈冷. 缓冲层Ta对退火Co/Cu/Co薄膜微观结构和界面互扩散的影响[J]. 材料导报, 2018, 32(22): 3931-3935.
[5] 高金凤, 李明慧, 徐键, 方刚. 溶胶-凝胶法制备铜锌锡硫薄膜及其太阳能电池的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 146-151.
[6] 刘源, 唐鹏, 张静全, 武莉莉, 李卫, 王文武, 冯良桓. N离子注入改性SnO2缓冲层及其CdTe太阳电池应用*[J]. 《材料导报》期刊社, 2017, 31(17): 152-157.
[7] 甘国友, 邹屏翰, 沈韬, 孙淑红, 朱艳. 阳离子部分取代Cu2ZnSnS4的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 10-17.
[8] 韩 贵, 陆金花, 王 敏, 李丹阳. 溶胶-凝胶法制备铜锌锡硫材料的研究进展[J]. 材料导报, 2017, 31(1): 10-17.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed