Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 146-151    https://doi.org/10.11896/j.issn.1005-023X.2017.017.021
  太阳能电池材料 |
溶胶-凝胶法制备铜锌锡硫薄膜及其太阳能电池的研究进展*
高金凤, 李明慧, 徐键, 方刚
宁波大学信息科学与工程学院, 宁波 315211
Development of Sol-Gel Fabrication of Cu2ZnSnS4 Thin-films and Solar Cells
GAO Jinfeng, LI Minghui, XU Jian, FANG Gang
College of Information Science & Engineering, Ningbo University, Ningbo 315211
下载:  全 文 ( PDF ) ( 1609KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 原料丰富价廉的铜锌锡硫(Cu2ZnSnS4,CZTS)材料与非真空、低成本绿色溶胶-凝胶法相结合在产业化制造高性价比CZTS薄膜太阳能电池方面的应用引人关注。为了了解未来发展方向,综述了溶胶-凝胶法制备CZTS薄膜与器件的研究进展,讨论了不同溶胶-凝胶工艺途径、不同溶剂、硫化等对CZTS薄膜制备与器件特性的影响,分析了Na掺杂及硫化退火对CZTS薄膜的作用,并结合绿色制造的要求探讨了其发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高金凤
李明慧
徐键
方刚
关键词:  铜锌锡硫  溶胶-凝胶法  薄膜太阳能电池  绿色制造    
Abstract: The combination of low-cost and abundant Cu2ZnSnS4 (CZTS) material and a low-cost non-vacuum and green sol-gel technique attracts researcher’s attention for application in industrialized fabrication of higher performance-price ratio CZTS solar cells. In order to know its future research direction, the development of sol-gel fabrication of CZTS thin films and solar cells has been reviewed. Effects of different preparation conditions such as sol-gel routes, solvents and sulfuration on CZTS thin films and devices are discussed. The effect of Na-doping and sulfuration-annealing on CZTS films are also analyzed. The development trend about green fabrication of CZTS films and devices is discussed.
Key words:  CZTS    sol-gel method    thin-film solar cells    green process
               出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TB43  
基金资助: 宁波市自然科学基金(2016A610067);宁波大学王宽诚幸福基金
通讯作者:  徐键:通讯作者,男,1965年生,博士,教授,研究方向为纳米光子材料与器材 E-mail:xujian@nbu.edu.cn   
作者简介:  高金凤:女,1922年生,硕士研究生,主要从事CZTS薄膜太阳电池的研究 E-mail:15728046315@163.com
引用本文:    
高金凤, 李明慧, 徐键, 方刚. 溶胶-凝胶法制备铜锌锡硫薄膜及其太阳能电池的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 146-151.
GAO Jinfeng, LI Minghui, XU Jian, FANG Gang. Development of Sol-Gel Fabrication of Cu2ZnSnS4 Thin-films and Solar Cells. Materials Reports, 2017, 31(17): 146-151.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.021  或          http://www.mater-rep.com/CN/Y2017/V31/I17/146
1 Sen S K. How modeling can attract experimentalists to improve solar cell′s efficiency: Divide-and-conquer approach [J]. Nonlinear Anal,2009,71:196.
2 Ito K, Nakazawa T. Electrical and optical properties of stannite-type quaternary semiconductor thin films [J]. Jpn J Appl Phys,1988,27(11):2094.
3 Tanaka T, Nagatomo T, et al. Preparation of Cu2ZnSnS4 thin films by hybrid sputtering [J]. J Phys Chem Solids,2005,66(11):1978.
4 Katagiri H, Saito K, Washio T, et al. Development of thin film solar cell based on Cu2ZnSnS4 thin films [J]. Sol Energy Mater Sol Cells,2001,65:141.
5 Vanalakar S A, Shin S W, Agawane G L, et al. Effect of post-annealing atmosphere on the grain-size and surface morphological pro-perties of pulsed laser deposited CZTS thin films [J]. Ceram Int,2014,40(9):15097.
6 Sheng X, Wang L, Tian Y, et al. Low-cost fabrication of Cu2ZnSnS4 thin films for solar cell absorber layers [J]. J Mater Sci: Mater Electron,2013,24(2):548.
7 Miyamoto Y, Tanaka K, Oonuki M, et al. Optical properties of Cu2ZnSnS4 thin films prepared by sol-gel and sulfurization method [J]. Jpn J Appl Phys,2008,47(1):596.
8 Guo Q, Ford G M, Yang W C, et al. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals [J]. J Am Chem Soc,2010,132(49):17384.
9 Todorov T K, Tang J, Bag S, et al. Beyond 11% efficiency: Cha-racteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells[J]. Adv Energy Mater,2013,3(1):34.
10 Lu X, et al. Wurtzite Cu2ZnSnS4 nanocrystals: A novel quaternary semiconductor [J]. Chem Commun,2011,47(11):3141.
11 Almeida R M, et al. Sol-gel processing of sulfide materials [M]∥Klein L, Aparicio M, Jitianu A. Handbook of Sol-Gel Science and Technology,Springer International Publishing,2016.
12 Zhang K. Preparation of Cu2ZnSnS4 thin films using sol-gel method and the study of their properties [D]. Xiangtan: Xiangtan University,2013(in Chinese).
张克栋. Cu2ZnSnS4薄膜的溶胶-凝胶制备及其性能研究[D]. 湘潭:湘潭大学,2013.
13 Su Z. Fabrication of Cu2ZnSnS4 thin film solar cells via sol-gel route [D]. Changsha: Central South University,2013(in Chinese).
苏正华. 溶胶-凝胶法制备铜锌锡硫(Cu2ZnSnS4)膜太阳能电池[D]. 长沙:中南大学, 2013.
14 Schnabel T, Loew M, Ahlswede E. Vacuum-free preparation of 7.5% efficient Cu2ZnSn(S,Se)4 solar cells based on metal salt precursors [J]. Sol Energy Mater Sol Cells,2013,117(14):324.
15 Ki W, Hillhouse H W, Ki W, et al. Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent [J]. Adv Energy Mater,2011, 1(5):732.
16 Tanaka K, Moritake N, Uchiki H. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors [J]. Sol Energy Mater Sol Cells,2007,91(13):1199.
17 Tanaka K, Oonuki M, Moritake N, et al. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing[J]. Sol Energy Mater Sol Cells,2009,93:583.
18 Tanaka K, Fukui Y, Moritake N, et al. Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency[J]. Sol Energy Mater Sol Cells,2011,95(3):838.
19 Maeda K, Tanaka K, Nakano Y, et al. Annealing temperature dependence of properties of Cu2ZnSnS4 thin films prepared by sol-gel sulfurization method[J]. Jpn J Appl Phys,2011,50(5):521.
20 Maeda K, Tanaka K, Fukui Y, et al. Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol-gel sulfurization [J]. Sol Energy Mater Sol Cells,2011,95:2855.
21 Meng M. Research of Cu2ZnSnSe4 thin film solar cell [D]. Hefei: Hefei University of Technology, 2013 (in Chinese).
孟明明. 铜锌锡硒薄膜太阳能电池研究[D]. 合肥: 合肥工业大学,2013..
22 Romanyuk Y E, Fella C M, Uhl A R, et al. Recent trends in direct solution coating of kesterite absorber layers in solar cells [J]. Sol Energy Mater Sol Cells, 2013, 119(8): 181.
23 Park H, Hwang Y H, Bae B S. Sol-gel processed Cu2ZnSnS4 thin films for a photovoltaic absorber layer without sulfurization [J]. J Sol-Gel Sci Technol,2013,65(1):23.
24 Kanuru C S, Shekar G L, Krishnamurthy L, et al. Surface morphological studies of solar absorber layer Cu2ZnSnS4 (CZTS) thin films by non-vacuum deposition methods [J]. J Nano-Electron Phys,2014,6(2):02004.
25 Guo B L, Chen Y H, Liu X J, et al. Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells [J]. AIP Adv,2014,4(9):802.
26 Corporation H P. Synthesis and characterization of CZTS thin films by sol-gel method without sulfurization [J]. Int J Photoenergy,2014,40(12):976.
27 Tian Q, Cui Y, et al. A robust and low-cost strategy to prepare Cu2ZnSnS4 precursor solution and its application in Cu2ZnSn(S,Se)4 solar cells[J]. RSC Adv,2015,5:4184.
28 Chaudhuri T K, Tiwari D. Earth-abundant non-toxic Cu2ZnSnS4 thin films by direct liquid coating from metal-thiourea precursor solution [J]. Sol Energy Mater Sol Cells,2012,101(6): 46.
29 Rajesh G, Muthukumarasamy N, Subramaniam E P, et al. Synthesis of Cu2ZnSnS4 thin films by dip-coating method without sulphurization [J]. J Sol-Gel Sci Technol,2013,66(2):288.
30 Liu C. CZTS thin-film solar cells prepared by the sol-gel spin-coating method [D]. Zhengzhou: Zhengzhou University,2014 (in Chinese).
刘超. 用溶胶-凝胶旋涂法制备CZTS薄膜太阳能电池[D]. 郑州:郑州大学,2014.
31 Seo D, Kim C, Oh E, et al. Control of metal salt ratio and MoS2 layer thickness in a Cu2ZnSnS4 thin film solar cell [J]. J Mater Sci: Mater Electron,2014,25(8):3420.
32 Tunuguntla V, Chen W C, Shih P, et al. A nontoxic solvent based sol-gel Cu2ZnSnS4 thin film for high efficiency and scalable low-cost photovoltaic cells [J]. J Mater Chem A, 2015, 3(29): 15324.
33 Kurokawa M, Tanaka K, Moriya K, et al. Fabrication of three-dimensional-structure solar cell with Cu2ZnSnS4 [J]. Jpn J Appl Phys,2012,51(10):1753.
34 Fischereder A, Rath T, Haas W, et al. Investigation of Cu2ZnSnS4 formation from metal salts and thioacetamide [J]. Chem Mater,2010,22(11):3399.
35 Edler M, Rath T, Schenk A, et al. Copper zinc tin sulfide layers prepared from solution processable metal dithiocarbamate precursors [J]. Mater Chem Phys,2012,136:582.
36 Zhang H, Li Z Q, Chen Y R, et al. Growth of Cu2ZnSn(S,Se)4 thin films by a simple eco-friendly solution route method [J]. Surf Rev Lett,2012,19(4):1250034.
37 Vanalakar S A, Yeo S J, Patil P S, et al. Structural, optical, surface morphological and electrical properties of Cu2ZnSnS4 thin film synthesized by drop casting technique [J]. Zeitschrift für Phy-sikalische Chemie,2014,228(9):917.
38 Tian Q, Huang L, Zhao W, et al. Metal sulfide precursor aqueous solutions for fabrication of Cu2ZnSn(S,Se)4 thin film solar cells [J]. Green Chem,2014, 7:1269.
39 Min Y Y, Lee C C, Dong S W. Influences of synthesizing temperatures on the properties of Cu2ZnSnS4 prepared by sol-gel spin-coated deposition [J]. J Sol-Gel Sci Technol,2009,52(1): 65.
40 Wang D, Sun Y, Meng X, et al. Preparation and characterization of Cu2ZnSnS4 films by sol-gel method [J]. Jilin Normal University Journal:Nat Sci Ed, 2013, 34(1): 29 (in Chinese).
王多, 孙亚明, 孟祥成,等. 溶胶-凝胶法制备Cu2ZnSnS4薄膜及其表征[J]. 吉林师范大学学报:自然科学版,2013,34(1):29.
41 Gao J,Xu J,et al. Sol-gel derived Cu2ZnSnS4 films and thin-film solar cells [J]. J Chin Ceram Soc,2015,43(12):1765(in Chinese).
高金凤,徐键,等. 溶胶-凝胶法制备Cu2ZnSnS4薄膜及其太阳能电池器件[J]. 硅酸盐学报2015,43(12):1765.
42 Jiang M, Li Y, Dhakal R, et al. Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol-gel method [J]. J Photon Energy,2011,1(35):232.
43 Jiang M, Dhakal R, Li Y, et al. Cu2ZnSnS4 (CZTS) polycrystalline thin films prepared by sol-gel method [C]∥IEEE Photovoltaic Spe-cialists Conference.Seattle,WA,USA,2011.001283.
44 Xie M, Zhuang D, Li B, et al. Influence of sulfurization time on phase structures of Cu2ZnSnS4 thin films[J].Chin J Vacuum Sci Technol,2014,34(4):391(in Chinese).
谢敏,庄大明,李博建, 等. 硫化时间对铜锌锡硫薄膜特性的影响[J]. 真空科学与技术学报,2014,34(4):391.
45 Sun Y, Zhang Y, Wang H, et al. Novel non-hydrazine solution processing of earth-abundant Cu2ZnSn(S,Se)4 absorbers for thin-film solar cells [J]. J Mater Chem A,2013,1(23):6880.
46 Chung C, Rhee, Yoo D J, et al. Properties of kesterite Cu2ZnSnS4 (CZTS) thin films prepared by sol-gel method using two types of solution [J]. J Ceram Process Res,2013,14:255.
47 Maeda K, Tanaka K, Fukui Y, et al. Dependence on annealing temperature of properties of Cu2ZnSnS4 thin films prepared by sol-gel sulfurization method [J]. Jpn J Appl Phys, 2011,50(S2):317.
48 Ilari G M, Fella C M, Ziegler C, et al. Cu2ZnSnSe4 Solar cell absorbers spin-coated from amine-containing ether solutions [J]. Sol Energy Mater Sol Cells,2012,104:125.
49 Hong T K, Donghwan K, Chinho P. Temperature effects on Cu2ZnSnS4 (CZTS) films deposited by spraying method [J]. Mol Cryst Liq Cryst,2012,564(1):155.
50 黄剑锋. 溶胶-凝胶原理与技术[M]. 北京:化学工业出版社,2005.
51 Kaelin M, Rudmann D, Kurdesau F, et al. Low-cost CIGS solar cells by paste coating and selenization [J]. Thin Solid Films,2005,480-481:486.
52 Wei S H, Zhang S B, Zunger A. Effects of Na on the electrical and structural properties of CuInSe2 [J]. J Appl Phys,1999,85:7214.
53 Kronik L, Cahen D, Schock H W. Effects of sodium on polycrystalline Cu(In,Ga)Se2 and its solar cell performance [J]. Adv Mater,1998,10:31.
54 Liu H, Xue Y, Qiao Z. Progress of application research on Cu2ZnSnS4 thin film and its devices [J]. Acta Phys Sin,2015,64(6):068801 (in Chinese).
刘浩, 薛玉明, 乔在祥,等. 铜锌锡硫薄膜材料及其器件应用研究进展[J]. 物理学报, 2015,64(6):068801.
55 Tejas P, Nagaraju J. Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films [J]. Sol Energy Mater Sol Cells,2011,95(3):1001.
56 Li, J V, Kuciauskas D, Young M R, et al. Effects of sodium incorporation in co-evaporated Cu2ZnSnSe4 thin-film solar cells [J]. Appl Phys Lett,2013,102(16):163905.
57 Su Z, Sun K, Han Z, et al. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol-gel route [J]. J Mater Chem A, 2013,2(2):500.
58 Katagiri H. Cu2ZnSnS4 thin film solar cells [J]. Thin Solid Films,2005,480:426.
59 Su Z, Sun K, Han Z, et al. Fabrication of ternary Cu-Sn-S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method [J]. J Mater Chem,2012,22:16346.
[1] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[2] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[3] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[4] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[5] 刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
[6] 山世浩, 王庆国, 曲兆明, 成伟, 李昂. 二氧化钒薄膜材料相变临界场强调控方法研究[J]. 材料导报, 2018, 32(6): 870-873.
[7] 许连强,唐志雄,唐少龙,都有为. 新型溶胶-凝胶法制备CoPd合金纳米颗粒及其磁性能表征[J]. 《材料导报》期刊社, 2018, 32(10): 1587-1591.
[8] 郭思彤,吴会军,杨丽修,刘燕妮,杨建明. 制备参数对SiO2气凝胶结构与性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 38-44.
[9] 陈晓萍, 马俊, 李宝华, 康飞宇. 三维结构磷酸铁锂纳米线阵列的制备及其电化学性能[J]. 《材料导报》期刊社, 2017, 31(4): 1-4.
[10] 陈 雨,余 飞,刘禹彤,徐小楠,张秋平,袁 欢,徐 明. 不同合成过程对溶胶-凝胶法制备的ZnO/Ag纳米复合材料光催化性能的影响[J]. 《材料导报》期刊社, 2017, 31(24): 120-124.
[11] 文钰斌, 刘新红, 顾强, 陈晓雨, 贾全利, 杨林, 马腾. 不同碳源对纳米锌铝尖晶石合成及颗粒粒径的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 109-113.
[12] 甘国友, 邹屏翰, 沈韬, 孙淑红, 朱艳. 阳离子部分取代Cu2ZnSnS4的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 10-17.
[13] 韩 贵, 陆金花, 王 敏, 李丹阳. 溶胶-凝胶法制备铜锌锡硫材料的研究进展[J]. 材料导报, 2017, 31(1): 10-17.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed