Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7053-7060    https://doi.org/10.11896/cldb.19040155
  无机非金属及其复合材料 |
柔性及纺织基钙钛矿太阳能电池的研究进展
董丽卡, 丁明乐, 庄志山, 夏广波, 邓倩囡, 邱琳琳, 杜平凡
浙江理工大学材料与纺织学院,杭州 310016
Research Progress of Flexible and Textile-based Perovskite Solar Cells
DONG Lika, DING Mingle, ZHUANG Zhishan, XIA Guangbo, DENG Qiannan, QIU Linlin, DU Pingfan
College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310016
下载:  全 文 ( PDF ) ( 7709KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统的能源器件大多为平面刚性结构,虽然坚固耐用,但对于实现器件的可穿戴来说,较难满足微型化、轻量化、柔性化、集成化的要求,这正是目前的应用瓶颈。纺织材料作为天然的穿戴材料,具有无可比拟的柔性和穿戴舒适性,且能适应人体曲面,因此,基于纺织材料构建能源器件是可穿戴技术发展的重要方向。本文介绍了钙钛矿太阳能电池的器件结构和工作原理,从电子传输层材料、空穴传输层材料、基底材料这三方面介绍了柔性钙钛矿太阳能电池的研究进展,并对纺织基柔性钙钛矿太阳能电池的最新研究进展进行了评述,最后对包括纺织基在内的柔性钙钛矿太阳能电池的未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董丽卡
丁明乐
庄志山
夏广波
邓倩囡
邱琳琳
杜平凡
关键词:  能源器件  钙钛矿太阳能电池  柔性  纺织基  可穿戴应用    
Abstract: At present, most of the traditional energy devices are planar rigid structures. Although they are sturdy and durable, it is difficult to meet the requirements of miniaturization, lightweight, flexibility and integration for the wearability of the devices, which is the bottleneck of the current application. Textile materials, as human natural wearable materials, have incomparable flexibility and wearing comfort, and can adapt to human curved surfaces. So, the construction of energy devices based on textile materials is an important direction of wearable technology development. In this paper, the device structure and working principle of perovskite solar cells are introduced, the research progress of flexible perovskite solar cells is also introduced from three aspects: electron transport layer material, hole transport layer material and substrate material, and the latest research work of textile-based flexible perovskite solar cells is reviewed. Finally, the future development of flexible perovskite solar cells, including ones based on textiles, is prospected.
Key words:  energy device    perovskite solar cell    flexible    textile-based    wearable application
                    发布日期:  2020-04-10
ZTFLH:  TM914.4  
基金资助: 浙江省自然科学基金(LY18F050011);中国纺织联合会应用基础研究项目(J201801);国家级大学生创新创业训练计划项目(201810338024)
通讯作者:  dupf@zstu.edu.cn   
作者简介:  董丽卡,本科毕业于中原工学院,获得纺织工程学士学位。现为浙江理工大学材料与纺织学院硕士研究生,在杜平凡副教授的指导下进行研究,主要研究方向为纺织结构可穿戴柔性能源器件。
丁明乐,浙江理工大学材料与纺织学院本科生。主要研究方向为可穿戴柔性材料与器件、智能纺织品等。正在主持浙江省大学生科技创新活动计划(新苗人才计划)1项,参与中国纺织工业联合会应用基础研究项目1项,发表SCI/EI收录论文2篇。
杜平凡,博士,浙江理工大学材料与纺织学院副教授、硕士生导师,浙江省高校中青年学科带头人。研究兴趣主要集中在纺织结构可穿戴柔性能源器件、智能纺织品、功能纺织品等方向。主持承担了国家自然科学基金、浙江省自然科学基金、中国纺织工业联合会应用基础研究项目等10多项科研项目;发表SCI/EI收录论文40篇;取得授权发明专利11项;博士论文获第三届“王善元优博基金”奖励;2018.01—2019.01,美国北卡州立大学访问学者。
引用本文:    
董丽卡, 丁明乐, 庄志山, 夏广波, 邓倩囡, 邱琳琳, 杜平凡. 柔性及纺织基钙钛矿太阳能电池的研究进展[J]. 材料导报, 2020, 34(7): 7053-7060.
DONG Lika, DING Mingle, ZHUANG Zhishan, XIA Guangbo, DENG Qiannan, QIU Linlin, DU Pingfan. Research Progress of Flexible and Textile-based Perovskite Solar Cells. Materials Reports, 2020, 34(7): 7053-7060.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040155  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7053
1 REN21. Renewables 2018 Global Status Report. 2018.
2 Zhang H. Basic Sciences Journal of Textile Universities, 2017, 30(4), 484(in Chinese).
张辉.纺织高等基础科学学报, 2017, 30(4), 484.
3 Zhang N N. Study on the wearable dye-sensitized solar cell textile. Ph.D. Thesis, Chongqing University, China, 2017(in Chinese).
张楠楠. 新型可穿戴染料敏化太阳能电池织物研究. 博士学位论文, 重庆大学, 2017.
4 Kojima A, Teshima K, Shirai Y, et al. Journal of the American Chemical Society, 2009, 131(17), 6050.
5 Li L, Zhang S, Yang Z, et al. Journal of Energy Chemistry, 2018, 27(3), 637.
6 NREL. Best research-cell efficiencies. 2019.
7 Wang Y X, Long X Y, Long W.Journal of Synthetic Crystals, 2018, 47(7), 1500(in Chinese).
王营霞, 龙翔宇, 龙伟.人工晶体学报, 2018, 47(7), 1500.
8 Zong X P. Device fabrication of perovskite solar cells based on CH3NH3PbI3 and theoretical study of the charge transporting mechanism. Ph.D. Thesis, Tianjin University of Technology, China, 2018(in Chinese).
宗雪平. CH3NH3PbI3钙钛矿电池的制备与电荷传输机制研究. 博士学位论文, 天津理工大学, 2018.
9 Green M A, Ho-Baillie A, Snaith H J. Nature Photonics, 2014, 8(7), 506.
10 Wan T T, Zhu A K, Guo Y M, et al. Materials Review A:Review Papers, 2017, 31(3), 16(in Chinese).
万婷婷, 朱安康, 郭友敏, 等.材料导报:综述篇, 2017, 31(3), 16.
11 Zhu L Z. Synthesis and application of inorganic ternary semiconductors in perovskite solar cells. Ph.D. Thesis, University of Science and Techno-logy of China, China, 2018 (in Chinese).
朱梁正. 三元无机半导体材料的合成及在钙钛矿太阳电池中的应用. 博士学位论文, 中国科学技术大学, 2018.
12 Kim H S, Lee C R, Im J H, et al. Scientific Reports, 2012, 2, 591.
13 Günes S, Neugebauer H, Sariciftci N S. Chemical reviews, 2007, 107(4), 1324.
14 Hao F, Stoumpos C C, Chang R P H, et al. Journal of the American Chemical Society, 2014, 136(22), 8094.
15 Kim B J, Kim D H, Lee Y Y, et al. Energy & Environmental Science, 2015, 8(3), 916.
16 Yang D, Yang R, Zhang J, et al. Energy & Environmental Science, 2015, 8(11), 3208.
17 Lin S Y, Su T S, Hsieh T Y, et al. Advanced Energy Materials, 2017, 7(17), 1700169.
18 Zhuang Z S, Qiu L L, Chen Y, et al. Materials Review, 2018, 32(S2), 5(in Chinese).
庄志山, 邱琳琳, 陈悦,等. 材料导报, 2018, 32(S2), 5.
19 Liu D, Kelly T L. Nature Photonics, 2014, 8(2), 133.
20 Heo J H, Lee M H, Han H J, et al. Journal of Materials Chemistry A, 2016, 4(5), 1572.
21 Qin F, Tong J, Ge R, et al. Journal of Materials Chemistry A, 2016, 4(36), 14017.
22 Bi C, Chen B, Wei H, et al. Advanced Materials, 2017, 29(30), 1605900.
23 Shin S S, Yang W S, Noh J H, et al. Nature Communications, 2015, 6, 7410.
24 Shin S S, Yang W S, Yeom E J, et al. The Journal of Physical Chemistry Letters, 2016, 7(10), 1845.
25 Xu Y. Research on perovskite solar cells with the lead-alkaline earth me-tal composite perovskite materials. Ph.D. Thesis, Huazhong University of Science and Technology,China, 2017(in Chinese).
徐尧. 铅-碱土金属复合钙钛矿材料及其太阳能电池应用研究. 博士学位论文, 华中科技大学, 2017.
26 Hou F, Su Z, Jin F, et al. Nanoscale, 2015, 7(21), 9427.
27 Yin X, Chen P, Que M, et al. ACS Nano, 2016, 10(3), 3630.
28 Liu Z, Zhu A, Cai F, et al. Journal of Materials Chemistry A, 2017, 5(14), 6597.
29 Jo J W, Seo M S, Park M, et al. Advanced Functional Materials, 2016, 26(25), 4464.
30 Nejand B A, Nazari P, Gharibzadeh S, et al. Chemical Communications, 2017, 53(4), 747.
31 Docampo P, Ball J M, Darwich M, et al. Nature communications, 2013, 4, 2761.
32 Li Y, Meng L, Yang Y M, et al. Nature Communications, 2016, 7, 10214.
33 Hu X, Huang Z, Zhou X, et al. Advanced Materials, 2017, 29(42), 1703236.
34 Feng J S, Zhu X J, Yang Z, et al. Advanced Materials, 2017, 30(35), 1801418.
35 Wang X Y, Li Z, Xu W J, et al. Nano Energy, 2015, 11, 728.
36 Heo J H, Shin D H, Lee M L, et al. ACS Applied Materials & Interfaces, 2018, 10(37), 31413.
37 Tavakoli M M, Tsui K H, Zhang Q, et al. ACS Nano, 2015, 9(10), 10287.
38 Park M, Kim H J, Jeong I, et al. Advanced Energy Materials, 2016, 5(22), 1501406.
39 Qiu L, Deng J, Lu X, et al. Angewandte Chemie International Edition, 2014, 53(39), 10425.
40 Li R, Xiang X, Tong X, et al. Advanced Materials, 2015, 27(25), 3831.
41 Qiu L, He S, Yang J, et al. Small, 2016, 12(18), 2419.
42 Qiu L, He S, Yang J, et al. Journal of Materials Chemistry A, 2016, 4(26), 10105.
43 Hu H, Yan K, Peng M, et al. Journal of Materials Chemistry A, 2016, 4(10), 3901.
44 Borazan I. Solar Energy Materials and Solar Cells, 2019, 192, 52.
45 Lam J Y, Chen J Y, Tsai P C, et al. RSC Advances, 2017, 7(86), 54361.
46 Jung J W, Bae J H, Ko J H, et al. Journal of Power Sources, 2018, 402, 327.
47 Du P, Hu X, Yi C, et al. Advanced Functional Materials, 2015, 25(16), 2420.
48 Li C, Islam M M, Moore J, et al. Nature Communications, 2016, 7, 13319.
49 Li C, Cong S, Tian Z, et al. Nano Energy, 2019, 60, 247.
[1] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[2] 刘国熠, 赵晓明, 刘元军, 谌玉红. 不同隔热填料对双层涂层柔性复合材料热防护性能的影响[J]. 材料导报, 2020, 34(8): 8194-8199.
[3] 张美云, 罗晶晶, 杨斌, 刘国栋, 宋顺喜. 芳纶纳米纤维的制备及应用研究进展[J]. 材料导报, 2020, 34(5): 5158-5166.
[4] 林进义, 安翔, 白鲁冰, 徐曼, 韦传新, 解令海, 林宗琼, 黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[5] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[6] 王倩,高能,张天垚,姚光,潘泰松,高敏,林媛. 氧化物功能薄膜器件的柔性化策略[J]. 材料导报, 2020, 34(1): 1014-1021.
[7] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[8] 薛秀丽,王世斌,曾超峰,李林安,王志勇. 柔性基底上金属薄膜的失效行为及界面能测试方法研究进展[J]. 材料导报, 2020, 34(1): 1050-1058.
[9] 李法利,李晟斌,曹晋玮,刘宜伟,尚杰,李润伟. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1): 1059-1068.
[10] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[11] 高久伟,卢乾波,郑璐,王学文,黄维. 柔性生物电传感技术[J]. 材料导报, 2020, 34(1): 1095-1106.
[12] 杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
[13] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[14] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[15] 卢颖,陈威林,高双,李润伟. 柔性阻变存储材料与器件研究进展[J]. 材料导报, 2020, 34(1): 1146-1154.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed