Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1095-1106    https://doi.org/10.11896/cldb.19100104
  |
柔性生物电传感技术
高久伟1,2,卢乾波1,3,郑璐1,2,王学文1,2,3,,黄维1,2,3
1 西北工业大学柔性电子研究院,西安 710072
2 柔性电子材料与器件工业和信息化部重点实验室,西安 710072
3 陕西省柔性电子重点实验室,西安 710072
Flexible Sensing Technology for Bioelectricity
GAO Jiuwei1,2,LU Qianbo1,3,ZHENG Lu1,2,WANG Xuewen1,2,3,,HUANG Wei1,2,3
1 Institute of Flexible Electronics,Northwestern Polytechnical University,Xi'an 710072,China
2 MIIT Key Laboratory of Flexible Electronics,Xi'an 710072,China
3 Shaanxi Key Laboratory of Flexible Electronics,Xi'an 710072,China
下载:  全 文 ( PDF ) ( 7945KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物电信号作为监测人体健康的关键特征信号具有重要意义,因此人们一直在不断地探索和改进生物电信号传感技术。随着可穿戴电子技术的不断发展,传统的生物电传感设备在生物相容性、可穿戴性、便携性、制作成本等方面的问题也越来越突出,已很难满足当前的应用需求。近年来,新型柔性生物电传感设备迅速发展,相比于传统的生物电传感设备,柔性传感设备具有可拉伸性好、便携性强、体积小、成本低、皮肤接触界面更加稳定等巨大优势,为生物电传感技术带来了革命性的变化。
由于柔性材料大多是绝缘的且与金属的结合力较差,因此出现了亟待解决的新问题,例如柔性基底材料和导电材料的选型问题、电极的设计和加工问题等。另外,生物电监测易受噪声干扰,因此减小其运动伪影、延长有效监测时间、提高生物相容性、提高信号采集质量也是柔性生物电传感器件的主要研究热点。
电极是柔性传感设备重要的组成单元,生物电检测电极的质量决定了生物电传感器的检测灵敏度、信号质量、使用寿命等。如今已经取得较好效果的柔性生物电检测电极主要有金属纳米线电极、柔性导电复合物电极等。其制备方法主要是:(1)在柔性材料中掺杂金、银、碳纳米管等导电材料来使其具有导电性能,再对结构和形状进行加工;(2)在柔性衬底上沉积或电镀导电材料,再对导电材料进行图案化加工等。制备工艺主要包含光刻、蒸镀、气相沉积、键合、喷涂、滴铸、旋涂、浸涂和真空过滤等。
本文归纳了柔性生物电传感技术的研究进展,对柔性生物电传感器的组成单元和工作原理、柔性基底材料的选择、柔性生物电监测电极的制备方法进行了论述,并对柔性生物电传感技术在心电、脑电、肌电、眼电等监测方面的应用进行概述,分析了柔性生物电传感技术面临的问题并展望其前景,以期为柔性传感技术在生物电监测方面的进一步发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高久伟
卢乾波
郑璐
王学文
黄维
关键词:  生物电传感  可穿戴电子  柔性导电聚合物  心电  脑电  肌电  眼电  监测    
Abstract: Bioelectricity is one of the important characteristic signals for body conditions, and could be monitored for disease diagnosis. In last decades, people have been constantly exploring and improving bioelectrical signal sensing technology. However, the shortcomings of traditional bioe-lectric sensing devices have become more and more prominent, which cast shadow on their applications of wearable health-monitoring system. Recent, flexible electronics with novel advanced functional materials promote revolutionary technique to monitor bioelectricity. Compared with traditional bioelectric sensors, the flexible device has many advantages such as good stretchability, portability, small size, low cost, and good biocompatibility.
There are many issues need to be resolved because most of the flexible materials are insulative and have weak adhesion to metals. For example, how to configurate flexible substrates and conductive materials with micro-patterns as suitable electrode for flexible electronics? How to prolong the effective working time by decreasing power consumption and improving biocompatibility?
This review paper summarizes recent progress of flexible sensing technology for monitoring bioelectricity. The paper presents the methods for preparation of flexible bioelectrical electrodes, as well as their applications in monitoring health-related signals such as ECG(electrocardiogram), EEG(electroencephalogram), EMG(electromyogram), and EOG(electro-ophthalmogram). At last, the paper ends with an analysis of challenges and prospect of flexible sensing technology for monitoring of bioelectricity.
Key words:  bioelectric sensor    flexible electronics    flexible conductive polymer    ECG    EEG    EMG    EOG    monitoring
                    发布日期:  2020-01-15
ZTFLH:  TB33  
基金资助: 中央高校基本科研专项资金(3102019PY004;31020190QD10);国家自然科学基金(11904289);陕西省自然科学基金(2019JQ-613);西北工业大学科研启动基金(19SH020159;19SH020123)
通讯作者:  iamxwwang@nwpu.edu.cn   
作者简介:  高久伟,2016年6月毕业于安徽工业大学,获得工学学士学位。现为西北工业大学柔性电子研究院博士研究生,在王学文教授的指导下进行研究。目前主要研究领域为面向健康的柔性传感器。
王学文,1984年生,西北工业大学教授,2018年入选“翱翔海外学者”A类,现任印刷电子研究所副所长,2017年获新加坡南洋理工大学博士学位。2017—2018年在新加坡南洋理工大学进行博士后研究。2010—2014年在中国科学院苏州纳米所先后任研究实习员和助理研究员。主要致力于柔性微纳智能传感器及相关材料研究,并探索其在健康医疗、人机交互、环境监测等战略新兴领域的应用。已在Nature Ma-terials, Science Advances, Nature Communications, Advanced Materials等学术期刊发表论文40篇,他引2200余次,H因子为24。相关研究成果被Materials Today、Phys.org等多个国际知名学术网站报道,并被《CCTV-13》《科技日报》《中国科学报》等媒体多次报道。已申请PCT国际专利和中国发明专利10余项,授权中国发明专利8项,欧洲、美国、澳大利亚和日本专利各1项。曾获国家优秀留学生奖、陕西省科学技术二等奖、中国科学院苏州纳米所i-lab杰出学术奖等多项奖励。
黄维,中国科学院院士,俄罗斯科学院外籍院士、名誉博士,亚太材料科学院院士、东盟工程与技术科学院外籍院士、巴基斯坦科学院院士,西北工业大学常务副校长,教授、博导,有机电子学/柔性电子学家。教育部“长江学者”特聘教授,国家杰出青年科学基金获得者,“千人计划”(溯及既往)国家特聘专家,科技部“973”项目首席科学家。亚太地区工程组织联合会(FEIAP)主席、英国谢菲尔德大学名誉博士、英国皇家化学学会会士、美国光学学会会士、国际光学工程学会会士,中国科协常委,中国化学会副理事长,中国化工学会副理事长,Research、npj Flexible Electronics和Advanced Materials等国际权威学术杂志主编或(顾问)编委。长期从事有机光电、柔性电子等相关领域的研究,并取得了大量系统性、创新性的研究成果,以第一或通讯作者身份在Nature、Nature Materials、Nature Photonics、Nature Nanotechnology、Nature Electronics、Nature Communications、Advanced Materials、Journal of the American Chemical Society等SCI学术期刊发表研究论文760余篇,H因子为121,国际同行引用70 000余次,是材料科学与化学领域全球高被引学者,获授权美国、新加坡和中国等国发明专利380余项,出版了《有机电子学》《生物光电子学》《有机薄膜晶体管材料器件和应用》《OLED显示技术》等学术专著。曾获国家自然科学奖二等奖和何梁何利基金科技进步奖等奖励,成果入围中国高等学校十大科技进展。
引用本文:    
高久伟,卢乾波,郑璐,王学文,黄维. 柔性生物电传感技术[J]. 材料导报, 2020, 34(1): 1095-1106.
GAO Jiuwei,LU Qianbo,ZHENG Lu,WANG Xuewen,HUANG Wei. Flexible Sensing Technology for Bioelectricity. Materials Reports, 2020, 34(1): 1095-1106.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100104  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1095
1 Bodenstein M, David M, Markstaller K. Critical Care Medicine, 2009, 37(2), 713.
2 Chi Y M, Jung T P, Cauwenberghs G. IEEE Reviews in Biomedical Engineering, 2010, 3, 106.
3 Zhou W, Liu W, Qiu Q F, et al. Chinese Science Bulletin, 2015, 60(15), 1352(in Chinese).
周伟, 刘伟, 邱清富,等.科学通报, 2015, 60(15), 1352.
4 Spinelli E, Haberman M.Physiological Measurement, 2010, 31(10), S183.
5 Paul G, Torah R, Beeby S, et al. Sensors and Actuators A: Physical, 2014, 206, 35.
6 Acar G, Ozturk O, Golparvar A J, et al. Electronics, 2019, 8(5), 479.
7 Arnin J, Anopas D, Horapong M, et al. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka,2013.
8 Yetisen A K, Martinez Hurtado J L, Unal B, et al. Advanced Materials 2018, 30, 1706910.
9 Ha M, Lim S, Ko H. Journal of Materials Chemistry B, 2018, 6(24), 4043.
10 Lee E K, Kim M K, Lee C H. Annual Review of Biomedical Engineering, 2019, 21(1), 299.
11 Yao S S, Swetha P, Zhu Y. Advanced Healthcare Materials, 2018, 7(1), 1700889.
12 Yao S, Zhu Y. JOM, 2016, 68(4), 1145.
13 David R M, Portnoy W M.Medical & Biological Engineering, 1972, 10(6), 742.
14 De Luca C J, Le Fever R S, Stulen F B. Medical and Biological Engineering and Computing, 1979, 17(3), 387.
15 Yapici M K, Alkhidir T E.Sensors (Basel), 2017, 17(4), 875.
16 Kitoko V, Nguyen T N, Nguyen J S, et al. IEEE Engineering in Medicine and Biology Society, 2011, 2011, 59.
17 He B, Liu Z. IEEE Reviews in Biomedical Engineering, 2008, 1, 23.
18 Krachunov S, Casson A J. Sensors (Basel), 2016, 16(10),1635.
19 Liao L D, Wang I J, Chen S F, et al.Sensors (Basel), 2011, 11(6), 5819.
20 Martins A C, Moreira A, Machado A V, et al. Materials Science and Engineering: C, 2015, 49, 356.
21 Li G, Zhang D, Wang S, et al.Sensors and Actuators B: Chemical, 2016, 237, 167.
22 Mota A R, Duarte L, Rodrigues D, et al. Sensors and Actuators A: Physical, 2013, 199, 310.
23 Pedrosa P, Fiedler P, Schinaia L, et al. Sensors and Actuators B: Chemical, 2017, 247, 273.
24 Wang F, Li G, Chen J, et al. Journal of Neural Engineering, 2016, 13(4), 046021.
25 Peng H L, Jing Quan L, Tian H C, et al.Sensors and Actuators B: Che-mical, 2016, 226, 349.
26 Jung H C, Moon J H, Baek D H, et al. IEEE Transactions on Biomedical Engineering, 2012, 59(5), 1472.
27 Moon J H, Baek D H, Choi Y Y, et al. Journal of Micromechanics and Microengineering, 2010, 20(2), 025032.
28 Chlaihawi A A, Narakathu B B, Eshkeiti A, et al. In: 2015 IEEE International Conference on Electro/Information Technology (EIT). DeKalb, IL, USA,2015.
29 Lee S M, Byeon H J, Lee J H, et al. Scientific Reports, 2014, 4(1), 6074.
30 Peng H L, Liu J Q, Tian H C, et al. Sensors and Actuators A: Physical, 2015, 235, 48.
31 Fernandes M S, Lee K S, Ram R J, et al. IEEE Engineering in Medicine and Biology Society, 2010, 2010, 3503.
32 Jin G J, Uddin M J, Shim J S.Advanced Functional Materials, 2018, 28(50), 1804351.
33 Yamamoto Y, Yamamoto D, Takada M, et al. Advanced Healthcare Materials, 2017, DOI: 10.1002/adhm.201700495.
34 Jung J M, Cha D Y, Kim D S, et al. Applied Physics A, 2014, 116(3), 1395.
35 Myllymaa S, Pirinen S, Myllymaa K, et al. Measurement Science and Technology, 2012, 23(12), 125701.
36 Constantinescu G, Jeong J W, Li X, et al. Medical Engineering & Phy-sics, 2016, 38(8), 807.
37 Norton J J, Lee D S, Lee J W, et al. Proceedings of the National Academy of Sciences, 2015, 112(13), 3920.
38 Xu B, Akhtar A, Liu Y, et al. Advanced Materials, 2016, 28(22), 4462.
39 Béfahy S, Yunus S, Burguet V, et al. The Journal of Adhesion, 2008, 84(3), 231.
40 Baek J Y, An J H, Choi J M, et al. Sensors and Actuators A: Physical, 2008, 143(2), 423.
41 Mostafalu P, Sonkusale S. RSC Advances, 2015, 5(12), 8680.
42 Prats Boluda G, Ye Lin Y, Garcia Breijo E, et al. Measurement Science and Technology, 2012, 23(12), 125703.
43 Tang L J, Wang M H, Tian H C, et al. Micromachines (Basel), 2017, 8(9), 281.
44 Choi J H, Koch K P, Poppendieck W, et al. IEEE Engineering in Medicine and Biology Society, 2009, 2009, 1600.
45 David Pur M, Bareket Keren L, Beit Yaakov G, et al. Biomedical Microdevices, 2014, 16(1), 43.
46 Chou N, Yoo S, Kim S. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2013, 21(4), 544.
47 Ochoa M, Wei P, Wolley A J, et al. Biomedical Microdevices, 2013, 15(3), 437.
48 Xu H, Weltman A, Hsiao M C, et al. Conference: IEEE Engineering in Medicine & Biology Society, 2015, 2015, 7139.
49 Starace F S, Bibari O, Berger F, et al. In: 2009 4th International IEEE/EMBS Conference on Neural Engineering. Antalya, Turkey,2009.
50 Hassler C, Ehler N, Singh V, et al. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). Montpellier,France,2015.
51 Merritt C R, Nagle H T, Grant E. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(2), 274.
52 Mohammed J, Lung C H, Ocneanu A, et al.In: 2014 IEEE International Conference on Internet of Things(ithings), and IEEE Green Computing and Communications (greencom) and IEEE Cyber, Physical and Social Computing (cpscom).Taiwan,China, 2014.
53 Jung J, Shin S, Kim Y T. Microelectronic Engineering, 2019, 203-204, 25.
54 Lou C, Li R, Li Z, et al. Sensors (Basel), 2016, 16(11), 1833.
55 Meng Y, Li Z B, Chen X, et al.Microsystem Technologies, 2014, 21(6), 1241.
56 Lin K, Wang X, Zhang X, et al. Microsystem Technologies, 2016, 23(5), 1443.
57 Bihar E, Roberts T, Ismailova E, et al. Advanced Materials Technologies, 2017, 2(4), 1600251.
58 Grozea C, Voinescu C D, Fazli S. Journal of Neural Engineering, 2011, 8(2), 025008.
59 Wang L F, Liu J Q, Yang B, et al. IEEE Sensors Journal, 2012, 12(9), 2898.
60 Shao L, Guo Y, Liu W, et al.Materials Research Express, 2019, 6(8), 085619.
61 Shu L, Xu T, Xu X. IEEE Sensors Journal, 2019, 19(15), 5995.
62 Sekitani T, Yoshimoto S, Araki T, et al. SID Symposium Digest of Technical Papers, 2017, 48(1), 143.
63 Myers A C, Huang H, Zhu Y. RSC Advances, 2015, 5(15), 11627.
64 Ren L, Xu S, Gao J, et al. Sensors (Basel), 2018, 18(4), 1191.
65 Das P S, Yoon H S, Kim J, et al. Microelectronic Engineering, 2018, 197, 96.
66 Guo X, Pei W, Wang Y, et al. Biomedical Signal Processing and Control, 2016, 30, 98.
67 Ameri S K, Kim M, Kuang I A, et al. npj 2D Materials and Applications, 2018, 2(1), 19.
68 Meziane N, Webster J G, Attari M, et al.Physiological Measurement, 2013, 34(9), R47.
69 Wang L F, Yang C S, Yang B, et al. Electronics Letters, 2013, 49(12), 739.
70 Garcia Breijo E, Prats Boluda G, Lidon Roger J V, et al. Microelectronics International, 2015, 32(2), 103.
71 Yang S, Chen Y C, Nicolini L, et al. Advanced Materials, 2015, 27(41), 6423.
72 Lopez Gordo M A, Sanchez Morillo D, Pelayo Valle F. Sensors (Basel), 2014, 14(7), 12847.
73 Casson A J. Biomedical Engineering Letters, 2019, 9(1), 53.
74 Kim D H, Lu N, Ma R, et al. Science, 2011, 333(6044), 838.
75 Kim S J, Cho K W, Cho H R, et al. Advanced Functional Materials, 2016, 26(19), 3207.
76 Mathiassen S E, Winkel J, Hagg G M. Journal of Electromyography and Kinesiology, 1995, 5(4), 197.
77 Al-Mulla M R, Sepulveda F, Colley M. Sensors (Basel), 2011, 11(4), 3545.
78 Castellini C, van der Smagt P. Biological Cybernetics, 2009, 100(1), 35.
79 Shafti A, Ribas Manero R B, Borg A M, et al. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(9), 1472.
80 Turker H, Sze H. Electrodiagnosis in New Frontiers of Clinical Research, Croatia:In Tech, 2013.
81 Han S, Kim M K, Wang B, et al. Advanced Materials, 2016, 28(46), 10257.
82 Liu S, Zhu M, Liu X, et al. International Journal of Adaptive Control and Signal Processing, 2019, 33(8), 1307.
83 Heo J, Yoon H, Park K S. Sensors (Basel), 2017, 17(7), 1485.
84 Merino M, Gomez I M, Molina A J. Biomedical Engineering Online, 2015, 14(1), 48.
85 Liang S F, Kuo C E, Lee Y C, et al. IEEE Transactions on Instrumentation and Measurement, 2015, 64(11), 2977.
[1] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[2] 丁杨, 周双喜, 董晶亮, 王中平, 郑智秋. 人工智能方法在土木工程监测中的运用[J]. 材料导报, 2019, 33(z1): 274-277.
[3] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[4] 李文旭, 马昆林, 龙广成, 谢友均, 马聪, 李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[5] 李哲, 金祖权, 邵爽爽, 徐翔波. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述[J]. 材料导报, 2018, 32(23): 4170-4181.
[6] 刘鑫, 杨鼎宜, 刘廉, 吕锦飞. 热-力耦合作用下PVA纤维混凝土力学性能及其声发射响应[J]. 材料导报, 2018, 32(18): 3135-3141.
[7] 林丽, 邓春, 经昊达, 宋鹏, 高建华, 王海洋, 张向军, 张秀丽. 基于油液在线监测的齿轮箱磨损趋势分析与研究[J]. 材料导报, 2018, 32(18): 3230-3234.
[8] 陶德彪, 蒋林华, 金鸣, 白舒雅, 姜少博. 银/氯化银电极用于监测混凝土中氯离子含量的研究*[J]. 《材料导报》期刊社, 2017, 31(20): 101-106.
[9] 薛子凡, 邢志国, 王海斗, 李国禄, 刘喆. 面向结构健康监测的压电传感器综述*[J]. 《材料导报》期刊社, 2017, 31(17): 122-132.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed