Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 10-17    https://doi.org/10.11896/j.issn.1005-023X.2017.015.002
  材料综述 |
阳离子部分取代Cu2ZnSnS4的研究进展*
甘国友1,2, 邹屏翰1,2, 沈韬1,2, 孙淑红1,2, 朱艳1,2
1 昆明理工大学材料科学与工程学院,昆明 650093;
2 云南省新材料制备与加工重点实验室,昆明650093;
Research Progress of Partial Substitution of Cation in Cu2ZnSnS4
GAN Guoyou1,2, ZOU Pinghan1,2, SHEN Tao1,2, SUN Shuhong1,2, ZHU Yan1,2
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 Key Laboratory of Advanced Materials of Yunnan Province, Kunming 650093;
下载:  全 文 ( PDF ) ( 1740KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 P型半导体Cu2ZnSnS4(CZTS)由于具有最佳的直接带隙(1.0~1.5 eV)、高的光吸收系数(超过104 cm-1)以及丰富、无毒的元素组成,使其成为商业化低成本太阳能电池最有希望的候选材料之一。然而,材料本身的一些缺陷制约了CZTS薄膜太阳能电池效率的提高。为了提高CZTS薄膜太阳能电池的效率,研究者们使用其他阳离子部分取代Cu、Zn或Sn来改善CZTS的缺陷。从CZTS的3种不同取代位置出发,综述了近年来各种阳离子部分取代CZTS的研究进展,同时对阳离子部分取代CZTS材料的发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘国友
邹屏翰
沈韬
孙淑红
朱艳
关键词:  阳离子取代  Cu2ZnSnS4  铜锌锡硫太阳能电池    
Abstract: Cu2ZnSnS4 (CZTS), a p-type semiconductor, is one of the most promising candidates for application in low-cost solar cells, owing to its optimal direct band gap (ca. ~1.0-1.5 eV), high absorption coefficient (over 104 cm-1) in the visible wavelength region, as well as its composition of naturally abundant and nontoxic elements. However, the intrinsic limitations of CZTS, such as secondary phases, antisite defects, carrier lifetime,etc, hinder the improvement of the efficiency of CZTS thin-film solar cell. In order to enhance the efficiency of CZTS thin-film solar cell, researchers have used partial substitution of Cu, Zn or Sn by other ca-tions to improve the defects of CZTS. In this paper, the progress of partially substituted CZTS in recent years is reviewed from three different substitution sites for CZTS. At the same time, the development prospect of partially substituted CZTS is discussed.
Key words:  cation substitution    Cu2ZnSnS4    CZTS solar cell
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TK02  
基金资助: *国家自然科学基金(61302042;61671225);昆明理工大学材料科学与工程学院拔尖人才项目(2015-2017);云南省新材料制备与加工重点实验室开放基金(2015)
作者简介:  甘国友:男,1965年生,博士,教授,博士研究生导师,研究方向为多功能电子陶瓷材料、半导体薄膜及器件开发、特种粉体材料制备与技术 E-mail:ganguoyou@kmust.edu.cn 沈韬:通讯作者,男,1984年生,博士,教授,博士研究生导师,研究方向为复合材料电学性能、纳米功能材料、材料无损检测 E-mail:shentao@kmust.edu.cn
引用本文:    
甘国友, 邹屏翰, 沈韬, 孙淑红, 朱艳. 阳离子部分取代Cu2ZnSnS4的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 10-17.
GAN Guoyou, ZOU Pinghan, SHEN Tao, SUN Shuhong, ZHU Yan. Research Progress of Partial Substitution of Cation in Cu2ZnSnS4. Materials Reports, 2017, 31(15): 10-17.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.002  或          http://www.mater-rep.com/CN/Y2017/V31/I15/10
1 Yu K, Carter E A. A strategy to stabilize kesterite CZTS for high-performance solar cells[J]. Chem Mater,2015,27(8):2920.
2 Bag S, Gunawan O, Gokmen T, et al. Hydrazine-pocessed ge-substituted CZTSe solar cells[J]. Chem Mater,2012,24(23):4588.
3 Gong W, Tabata T, Takei K, et al. Crystallographic and optical properties of (Cu, Ag)2ZnSnS4 and (Cu, Ag)2ZnSnSe4 solid solutions[J]. Phys Status Solidi (c),2015,12(6):700.
4 Chen L, Deng H, Cui J, et al. Composition dependence of the structure and optical properties of Cu2MnxZn1-xSnS4 thin films[J]. J Alloys Compd,2015,627:388.
5 Huang C, Chan Y, Liu F, et al. Synthesis and characterization of multicomponent Cu2(FexZn1-x)SnS4 nanocrystals with tunable band gap and structure[J]. J Mater Chem A,2013,1(17):5402.
6 Fu J, Tian Q, Zhou Z, et al. Improving the performance of solution-processed Cu2ZnSn(S,Se)4 photovoltaic materials by Cd2+ substitution[J]. Chem Mater,2016,28(16):5821.
7 Romanyuk Y E, Hagendorfer H, Stücheli P, et al. All solution-processed chalcogenide solar cells—From single functional layers towards a 13.8% efficient CIGS device[J]. Adv Funct Mater,2015,25(1):12.
8 Rampino S, Bronzoni M, Colace L, et al. Low-temperature growth of single-crystal Cu(In,Ga)Se2 films by pulsed electron deposition technique[J]. Solar Energy Mater Solar Cells,2015,133:82.
9 Guo Q, Hillhouse H W, Agrawal R. Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells[J]. J Am Chem Soc,2009,131(33):11672.
10 Miskin C K, Yang W C, Hages C J, et al. 9.0% efficient Cu2ZnSn-(S,Se)4 solar cells from selenized nanoparticle inks[J]. Prog Photovol: Res Appl,2015,23(5):654.
11 Shin B, Gunawan O, Zhu Y, et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2 ZnSnS4 absorber[J]. Prog Photovol:Res Appl,2013,21(1):72.
12 Su Z, Tan J M R, Li X, et al. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency[J]. Adv Energy Mater,2015,5(19):1500682.
13 Chantana J, Hironiwa D, Watanabe T, et al. Controlled back slope of Ga/(In+Ga) profile in Cu(In,Ga)Se2 absorber fabricated by multi layer precursor method for improvement of its photovoltaic performance[J]. Solar Energy Mater Solar Cells,2015,133:223.
14 Kim I, Kim K, Oh Y, et al. Bandgap-graded Cu2Zn(Sn1-xGex)S4 thin-film solar cells derived from metal chalcogenide complex ligand capped nanocrystals[J]. Chem Mater,2014,26(13):3957.
15 Zhao W, Wang G, Tian Q, et al. Solution-processed Cu2CdSn(S,Se)4 thin film solar cells[J]. Solar Energy Mater Solar Cells,2015,133:15.
16 Shibuya T, Goto Y, Kamihara Y, et al. From kesterite to stannite photovoltaics: Stability and band gaps of the Cu2(Zn,Fe)SnS4 alloy[J]. Appl Phys Lett,2014,104(2):021912.
17 Wang W, Winkler M T, Gunawan O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Adv Energy Mater,2014,4(7):403.
18 Ananthoju B, Mohapatra J, Jangid M K, et al. Cation/anion substitution in Cu2ZnSnS4 for improved photovoltaic performance[J]. Sci Rep,2016,6:35369.
19 Huang D, Dai H, Xie Z Z, et al.First-principles study on the band structure optimization for the photo catalyst Cu2ZnSnS4 through element substitution[J].Guangxi Sci,2014,21(3):220.
黄丹, 戴豪, 谢政专, 等. 替代元素对光催化半导体Cu2ZnSnS4能带结构优化的第一性原理研究[J]. 广西科学,2014,21(3):220.
20 Chen S, Gong X G, Wei S H. Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2 ( X = S and Se) and their alloys[J]. Phys Rev B: Condensed Matter,2007,75(20):205209.
21 Li W, Liu X, Cui H, et al. The role of Ag in (Ag,Cu)2ZnSnS4 thin film for solar cell application[J]. J Alloys Compd,2015,625:277.
22 Gershon T, Shin B, Bojarczuk N, et al. The role of sodium as a surfactant and suppressor of non-radiative recombination at internal surfaces in Cu2ZnSnS4[J]. Adv Energy Mater,DOI:10.1002/aenm.201400849.
23 Chen X Y, Wang J L, Zhou W H, et al. Rational synthesis of (Cu1-xAgx)2ZnSnS4 nanocrystals with low defect and tuning band gap[J]. Mater Lett,2016,181:317.
24 Wei S Y, Cai C H, Huang W C, et al. The effect of Ag incorporation on the phase stability, crystallinity and band structure on the (Cu,Ag)2ZnSn(S,Se)4 kesterite solar cells[C]// IEEE Photovoltaic Specialists Conference.New Orleans,2015:1.
25 Xiao Z Y, Li Y F, Yao B, et al. Bandgap engineering of Cu2CdxZn1-xSnS4 alloy for photovoltaic applications: A complementary experimental and first-principles study[J]. J Appl Phys,2013,114(18):183506.
26 Ramasamy K, Zhang X, Bennett R D, et al. Synthesis, photoconductivity and self-assembly of wurtzite phase Cu2CdxZn1-xSnS4 nanorods[J]. RSC Adv,2013,3(4):1186.
27 Xu N, Li P, Hao Y, et al. Effect of sputtering power on Cd/Zn atomic ratio and optical properties of Cu2CdxZn1-xSnS4 thin films deposited by magnetron sputtering: An experimental and first-principle study[J]. Chem Phys Lett,2016,660:132.
28 Ibraheam A S, Al-Douri Y, Hashim U, et al. Cadmium effect on optical properties of Cu2CdxZn1-xSnS4 quinternary alloys nanostructures[J]. Solar Energy,2015,114:39.
29 Romanyuk Y E, Fella C M, Uhl A R, et al. Recent trends in direct solution coating of kesterite absorber layers in solar cells[J]. Solar Energy Mater Solar Cells,2013,119:181.
30 Chen S, Walsh A, Luo Y, et al. Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors[J]. Phys Rev B: Condensed Matter,2010,82(19):4706.
31 Bonazzi P, Bindi L, Bernardini I P, et al. A model for the mechanism of incorporation of Cu, Fe and Zn in the stannite-kёsterite series, Cu2FeSnS4 -Cu2ZnSnS4[J]. Canadian Mineralogist,2003,41:639.
32 Schorr S, Hoebler H J, Tovar M. A neutron diffraction study of the stannite-kesterite solid solution series[J]. Eur J Mineral,2007,19(1):65.
33 Fontané X, Izquierdo-Roca V, Saucedo E, et al. Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4[J]. J Alloys Compd,2012,539:190.
34 Agawane G L, Shin S W, Vanalakar S A, et al. Next generation promising Cu2(ZnxFe1-x)SnS4 photovoltaic absorber material prepared by pulsed laser deposition technique[J]. Mater Lett,2014,137:147.
35 Khadka D B, Kim J. Structural transition and band gap tuning of Cu2(Zn,Fe)SnS4 chalcogenide for photovoltaic application[J]. J Phys Chem C,2014,118(26):14227.
36 Shadrokh Z, Yazdani A, Eshghi H. Solvothermal synthesis of Cu2Zn1-xFexSnS4 nanoparticles and the influence of annealing conditions on drop-casted thin films[J]. Semicond Sci Technol,2016,31(4):045004.
37 Kevin P, Malik M A, Mcadams S, et al. Synthesis of nanoparticulate alloys of the composition Cu2Zn1-xFexSnS4: Structural, optical, and magnetic properties[J]. J Am Chem Soc,2015,137(48):15086.
38 Kevin P, Malik M A, O′brien P. The controlled deposition of Cu2-(ZnyFe1-y)SnS4, Cu2(ZnyFe1-y)SnS4 and Cu2(ZnyFe1-y)Sn-(SxSe1-x)4 thin films by AACVD: Potential solar cell materials based on earth abundant elements[J]. J Mater Chem C,2015,3(22):5733.
39 Orletskii I G, Mar’yanchuk P D, Solovan M N, et al. Peculiarities in electrical and optical properties of Cu2Zn1-xMnxSnS4 films obtained by spray pyrolysis[J]. Techn Phys Lett,2016,42(3):291.
40 Huang K L, Huang C H, Lin W T, et al. Solvothermal synthesis and tunable bandgap of Cu2(Zn1-xCox)SnS4 and Cu2(Fe1-xCox)SnS4 nanocrystals[J]. J Alloys Compd,2015,646:1015.
41 Ford G M, Guo Q, et al. Earth abundant element Cu2Zn(Sn1-xGex)S4 nanocrystals for tunable band gap solar cells: 6.8% efficient device fabrication[J]. Chem Mater,2011,23(10):2626.
42 Guo Q, Ford G M, Yang W C, et al. Enhancing the performance of CZTSSe solar cells with Ge alloying[J]. Solar Energy Mater Solar Cells,2012,105:132.
43 Caballero R, Cano-Torres J M, Garcia-Llamas E, et al. Towards the growth of Cu2ZnSn1-xGexS4 thin films by a single-stage process: Effect of substrate temperature and composition[J]. Solar Energy Mater Solar Cells,2015,139:1.
44 Chen J, Li W, Yan C, et al. Studies of compositional dependent Cu2Zn(GexSn1-x)S4 thin films prepared by sulfurizing sputtered metallic precursors[J]. J Alloys Compd,2015,621:154.
45 Khadka D B, Kim J. Band gap engineering of alloyed Cu2ZnGex-Sn1-xQ4(Q = S,Se) films for solar cell[J]. J Phys Chem C,2015,119(4):1706.
46 Peng X, Zhang S, Xiang Y. Solvothermal synthesis of Cu2Zn-(Sn1-x-Gex)S4 and Cu2Zn(Sn1-xGex)S3 nanoparticles with tunable band gap energies[J]. J Alloys Compd,2015,640:75.
47 Clauwaert K, Goossens M, et al. Electrodeposition and selenization of brass/tin/germanium multilayers for Cu2Zn(Sn1-x-Gex)Se4 thin film photovoltaic devices[J]. Electrochim Acta,2016,198:104.
48 Chesman A S R, Van Embden J, Della Gaspera E, et al. Cu2ZnGeS4 nanocrystals from air-stable precursors for sintered thin film alloys[J]. Chem Mater,2014,26(19):5482.
49 Caballero R, Victorov I, Serna R, et al. Band-gap engineering of Cu2ZnSn1-xGexS4 single crystals and influence of the surface properties[J]. Acta Mater,2014,79:181.
50 Hages C J, Carter N J, Agrawal R, et al. Generalized current-vol-tage analysis and efficiency limitations in non-ideal solar cells: Case of Cu2ZnSn(SxSe1-x)4 and Cu2Zn(SnyGe1-y)(SxSe1-x)4[J]. J Appl Phys,2014, 115(23):234504.
51 Li Y, Ling W, Han Q, et al. Colloidal Cu2Zn(Sn1-xGex)S4 nanocrystals: Electrical properties and comparison between their wurtzite and kesterite structures[J]. RSC Adv,2014,4(98):55016.
52 Morihama M, Gao F, Maeda T, et al. Crystallographic and optical properties of Cu2Zn(Sn1-xGex)Se4 solid solution[J]. Jpn J Appl Phys,2014,53(4S):04ER09.
53 Li F, Xia Z, Liu Q. Insight into the cntrolled snthesis of Cu2Zn(Ge,Sn)S4 nanoparticles with selective grain size[J]. J Phys Chem C,2016,120(30):16969.
54 Shu Q, Yang J H, Chen S, et al. Cu2Zn(Sn,Ge)Se4 and Cu2Zn(Sn,Si)Se4 alloys as photovoltaic materials: Structural and electronic properties[J]. Phys Rev B,2013,87(11):269.
55 Xu J, Liu Y, Yang Y. Fabrication of Cu2Zn(Sn,Si)Se4 thin films using a two-step method for solar cell applications[J]. Electron Mater Lett,2016,12(6):761.
56 Hamdi M, Chrif B, Lafond A, et al. Electrical properties of Cu2Zn-(Sn1-xSix)S4 (x=0.1, x=0.4) compounds for absorber materials in solar-cells[J]. J Alloys Compd,2015,643:129.
57 Hamdi M, Louati B, Lafond A, et al. Structural and electrical pro-perties of Cu2Zn(Sn1-xSix)S4 (x=0, x=0.5) materials for photovoltaic applications[J]. J Alloys Compd,2015,620:434.
58 Hamdi M, Lafond A, Guillot-Deudon C, et al. Crystal chemistry and optical investigations of the Cu2Zn(Sn,Si)S4 series for photovoltaic applications[J]. J Solid State Chem,2014,220:232.
59 Hamdi M, Oueslati A, Lafond A, et al. Structural, morphological and electrical properties of Cu2ZnSn1-xSixS4 (x = 0.8, x = 1) for solar-cells applications[J]. J Alloys Compd,2016,674:73.
60 Tablero C. Electronic and photon absorber properties of Cr-doped Cu2ZnSnS4[J]. J Phys Chem C, 2012,116(44):23224.
61 Sarswat P K, Free M L. The effects of dopant impurities on Cu2Zn-SnS4 system Raman properties[J]. J Mater Sci,2014,50(4):1613.
62 Tiwari D, Koehler T, Lin X, et al. Cu2ZnSnS4 thin films generated from a single solution based precursor: The effect of Na and Sb doping[J]. Chem Mater,2016,28(14):4991.
[1] 沈韬,柴鲜花,孙淑红,朱艳. 微波法制备铜锌锡硫的研究进展[J]. 材料导报, 2019, 33(13): 2159-2166.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed