Please wait a minute...
材料导报  2020, Vol. 34 Issue (17): 17155-17167    https://doi.org/10.11896/cldb.20030026
  无机非金属及其复合材料 |
具有聚集诱导发光性质的热活化延迟荧光材料综述
赵思宇1, 张祥2, 卢伶1, 张义1, 赵青华1
1 华侨大学材料科学与工程学院,福建省高校功能材料重点实验室,厦门 361021
2 河南省科学院高新技术研究中心,郑州 450002
A Review on Thermally Activated Delayed Fluorescent Material with Aggregation-induced Emission Property
ZHAO Siyu1, ZHANG Xiang2, LU Ling1, ZHANG Yi1, ZHAO Qinghua1
1 The Key Laboratory for Functional Materials of Fujian Higher Education, Colledge of Materials Science & Engineering, Huaqiao University, Xiamen 361021,China
2 High & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002
下载:  全 文 ( PDF ) ( 9026KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机发光二极管(Organic light-emitting diode, OLED)近些年来受到了广泛的关注。在众多有机电致发光材料中,热激活延迟荧光(Thermally activated delayed fluorescent,TADF)材料能够同时利用单线态和三线态激子发光,获取100%的理论内量子效率,因此被认为是有机电致发光材料中第三代材料的代表。然而,TADF材料同样存在聚集淬灭效应(Aggregation-caused quenching, ACQ),因此会导致发光效率降低。
   由于聚集诱导发光(Aggregation-induced emission, AIE)能够在一定程度上减弱淬灭效应,从而使发光效率得到提高,因此,大量具有AIE性质的TADF材料不断被报道。本文简要介绍了OLED材料的发展历程,阐述了TADF、TTA、HLCT的相关机理、AIE效应的机理及TADF材料的设计原则等,重点介绍了以羰基、二苯砜、三嗪以及其他类型吸电子基团为受体单元,建立的具有AIE性质的TADF材料及器件的研究进展。在具有AIE性质的TADF材料设计中,基于苯酮的分子设计大多是采用不对称结构,这不仅能使分子的AIE特性显著,而且有利于分子刚性的增强,从而使分子的单线态和三线态能极差(ΔEST)值减小。另外,与苯酮基团相比,苯砜结构能够产生较大的扭转角,更易于形成AIE材料;与前两者相比,三嗪本身存在多个能与电子供体结合的接枝点,这使得分子内的偏转角和能级更易于调控。最后,文章展望了具有AIE性质的TADF材料的发展前景,以期为未来设计新型TADF材料提供有意义的理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵思宇
张祥
卢伶
张义
赵青华
关键词:  聚集诱导发光(AIE)  热活化延迟荧光(TADF)  效率  有机发光二极管(OLED)  非掺杂    
Abstract: Organic light-emitting diodes (OLEDs) have attracted much attention in recent years. Among organic electroluminescent materials, thermally activated delayed fluorescent (TADF) materials, which could harvest both singlet and triplet excitons to afford internal quantumn efficiencies of 100%, are emerging as one of the third-generation organic electroluminescent materials. However, TADF materials have to suffer from aggregation-caused quenching (ACQ) effect, which results in reduced luminance efficiencies.
Aggregation-induced emission (AIE) materials have excellent emission efficiencies by suppressing concentration quenching. Therefore, a few of TADF materials with AIE characters have been reported. In this review, the research progress of OLED materials, the related mechanisms of TADF, TTA, HLCT and AIE, the design principles of TADF materials are briefly introduced. The paper specially focuses on the outputs of works on the photophysical performance improvement of TADF materials with AIE effect and relevant devices, in which carbonyl, diphenyl sulfone, triazine and other representative electron withdrawing groups are utilized as electron acceptors. In design concept of TADF materials with benzophenone substituents, asymmetric structures are adopted to construct TADF materials, which can enhance AIE characteristics of the molecules, and also reduce ΔEST values due to increased rigidity of the molecular. Compared with phenylsulfone groups considered as acceptors for TADF materials can form a larger torsion angle, which is more inclined to form AIE properties. Moreover, triazine units in TADF materials provide multiple grafting points for the combination with electron donors, and consequently, facilitate the adjustment of intramolecular deflection angle and energy level. The paper ends with a prospective discussion on the future trend of TADF materials with AIE properties, which is expected to provide a meaningful theoretical guidance for the design this type of novel materials.
Key words:  aggregation-induced emission (AIE)    thermally activated delayed fluorescent (TADF)    efficiency    organic light-emitting diode (OLED)    non-doped
               出版日期:  2020-09-10      发布日期:  2020-09-02
ZTFLH:  O625  
基金资助: 国家自然科学基金(51202073);福建省自然科学基金面上项目(2016J01233);福建省石墨烯粉末及复合材料研究中心建设项目(2017H2001);华侨大学研究生科研创新基金资助项目
通讯作者:  qhzhao@hqu.edu.cn   
作者简介:  赵思宇,2018年6月毕业于海南师范大学,获得理学学士学位。现为华侨大学福建省高校功能材料重点实验室硕士研究生,在赵青华副教授的指导下进行研究。目前主要研究领域为新型热激活延迟荧光材料的设计与合成。
赵青华,华侨大学材料科学与工程学院副教授,硕士研究生导师。2001年7月毕业于延边大学理工学院化工系,2008年2月在韩国国立庆尚大学高分子工学专业取得博士学位,随后两年在该校的工业研究所进行博士后研究工作。2010年3月回国后入职华侨大学。主要从事有机半导体材料的设计、合成及性能研究。近年来,在有机光电子材料领域发表论文10余篇,包括Advanced Materials、Organic Electronics、Journal of Polymer Science Part A: Polymer Chemistry、RSC Advanced等。
引用本文:    
赵思宇, 张祥, 卢伶, 张义, 赵青华. 具有聚集诱导发光性质的热活化延迟荧光材料综述[J]. 材料导报, 2020, 34(17): 17155-17167.
ZHAO Siyu, ZHANG Xiang, LU Ling, ZHANG Yi, ZHAO Qinghua. A Review on Thermally Activated Delayed Fluorescent Material with Aggregation-induced Emission Property. Materials Reports, 2020, 34(17): 17155-17167.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030026  或          http://www.mater-rep.com/CN/Y2020/V34/I17/17155
1 Tang C W, VanSlyke S A.Applied Physics Letters,1987, 51(12), 913.
2 Geffroy B, Le Roy P, Prat C. Polymer International, 2006, 55(6), 572.
3 Reineke S, Lindner F, Schwartz G, et al. Nature,2009, 459(7244), 234.
4 Wang Q, Ma D. Chemical Society Reviews, 2010, 39(7), 2387.
5 Lee C W, Lee J Y. Advanced Materials, 2013, 25(38), 5450.
6 Xiao L, Su S J, Agata Y, et al. Advanced Materials, 2009, 21(12), 1271.
7 Yersin, Hartmut. John Wiley & Sons, DE, 2008.
8 Uoyama H, Goushi K, Adachi C, et al. Nature, 2012, 492(7428), 234.
9 Zhang Q, Zhou Q, Cheng Y, et al. Advanced Materials, 2004, 16(5), 432.
10 Turro N J, Ramamurthy V, Scaiano J C. Viva Books, University Science Books, Sausalito, CA, 2017.
11 Goushi K, Kou Y, Adachi C, et al. Nature Photonics, 2012, 6(4), 253.
12 Today H O. Chemical Communications,2012, 48(93), 11394.
13 Zhang Q, Tsang D, Adachi C, et al. Advanced Materials, 2015, 27(12), 2096.
14 Yang Z, Mao Z, Aldred M P, et al. Chemical Society Reviews, 2017, 46(3), 915.
15 Gao G C, Ren T G.Chemical Research, 2017, 28(2), 150 (in Chinese).
   高桂才, 任铁钢. 化学研究, 2017, 28(2), 150.
16 Chiang C J, Kimyonok A, Monkman A P, et al. Advanced Functional Materials, 2013, 23(6), 739.
17 Kim S K, Yang B, Park J W, et al. Journal of Materials Chemistry, 2008, 18(28), 3376.
18 Kim S K, Yang B, Park J, et al. Organic Electronics, 2009, 10(5), 822.
19 Yang B, Kim S K, Xu H, et al. Chemphyschem A European Journal of Chemical Physics & Physical Chemistry, 2008, 9(17), 2601.
20 Endo A, Mai O, Adachi C, et al. Advanced Materials, 2010, 21(47), 4802.
21 Klessinger M. Angewandte Chemie International Edition, 2010, 34(5), 549.
22 Liang Y, Bing Y, Ma Y G. Science China Chemistry, 2014, 57(3), 335.
23 Dias F B, Bourdakos K N, Monkman A P, et al. Advanced Materials, 2013, 25(27), 3707.
24 Saragi T P, Spehr T, Salbeck J, et al. Chemical Reviews, 2007, 107(4), 1011.
25 Shizu K, Noda H, Adachi C, et al. Journal of Physical Chemistry C, 2015, 119(47), 26283.
26 Hirata S, Sakai Y, Tanaka H, et al. Nature Materials, 2015, 14(3), 330.
27 Tsujimoto H, Ha D G, Baldo M A, et al. Journal of the American Chemical Society, 2017, 139(13), 4894.
28 Lee S Y, Yasuda T, Adachi C, et al. Dalton Transactions, 2015, 44(18), 8356.
29 Cho Y J, Jeon S K, Lee J Y, et al. Angewandte Chemie International Edition, 2015, 54(17), 5201.
30 Hatakeyama T, Shiren K, Nakajima K, et al. Advanced Materials, 2016, 28(14), 2777.
31 Wu S, Aonuma M, Adachi C, et al. Journal of Materials Chemistry C, 2014, 2, 421.
32 Murawski C, Leo K, Gather M C. Advanced Materials, 2013, 25(47), 6801.
33 Bünau G, Birks J B. Berichte der Bunsengesellschaft für physikalische Chemie, 1970, 74(12), 1294.
34 Jenekhe S A, Osaheni J A. Science, 1994, 265(5173), 765.
35 Luo J, Lam J W, Kwok H S, et al. Chemical Communications, 2001, 18, 1740.
36 Liu Y, Tao X, Wang F, et al. The Journal of Physical Chemistry C, 2007, 111(17), 6544.
37 Ding D, Li K, Tang B Z, et al. Accounts of Chemical Research, 2013, 46(11), 2441.
38 Mutai T, Sawatani H, Araki K, et al. The Journal of Organic Chemistry, 2013, 78(6), 2482.
39 Choi S, Bouffard J, Kim Y. Chemical Science, 2014, 5(2), 751.
40 Sonoda Y, Tsuzuki S, Yoshida M, et al. The Journal of Physical Chemistry A, 2009, 114(1), 172.
41 Hu R, Lager E, Williams I D, et al. The Journal of Physical Chemistry C, 2009, 113(6), 15845.
42 Xie Z, Yang B, Cheng G, et al. Chemistry of Materials, 2005, 17(6), 1287.
43 Chen J, Law C C, Tang B Z, et al. Chemistry of Materials, 2003, 15(7), 1535.
44 Leung N L, Xie N, Tang B Z, et al. Chemistry-A European Journal, 2014, 20(47), 15349.
45 Mei J, Hong Y, Tang B Z, et al. Advanced Materials, 2014, 26(31), 5429.
46 Aizawa N, Tsou C J, Yasuda T, et al. Polymer Journal, 2017, 49(1), 197.
47 Hu J, Zhang X, Tao Y, et al. Dyes and Pigments, 2017, 137, 480.
48 Guo J, Li X L, Su S J, et al. Advanced Functional Materials, 2017, 27(13), 1606458.
49 Guo J, Li X L, Tang B Z, et al. Chemistry of Materials, 2017, 29(8), 3623.
50 Huang J, Nie H, Tang B Z, et al. Angewandte Chemie, 2017, 56(42), 12971.
51 Zhao Y, Wang W, Tang B Z, et al. Journal of Materials Chemistry C, 2018, 6(11), 2873
52 Chen Y, Wang S, Wang L, et al. Journal of Materials Chemistry C, 2018, 6(46), 12503.
53 Ma F, Cheng Y, Zheng Y, et al. Journal of Materials Chemistry C, 2019, 7(30), 9413.
54 Xu S, Liu T, Mu Y, et al. Angewandte Chemie International Edition, 2015, 54(3),874.
55 Gan S, Luo W, Tang B Z, et al. Journal of Materials Chemistry C, 2016, 4(17), 3705.
56 Lee I H, Song W, Lee J Y. Organic Electronics, 2016, 29, 22.
57 Aydemir M, Xu S, Monkman A P, et al. The Journal of Physical Chemistry C, 2017, 121(33), 17764.
58 Wu K, Wang Z, Zhan L, et al. The Journal of Physical Chemistry Letters, 2018, 9(7), 1547.
59 Li J, Zhang R, Wang Z, et al. Advanced Optical Materials, 2018, 6(6), 1701256.
60 Yang Z, Mao Z, Xu C, et al. Chemical Science, 2019(35), 10, 8129.
61 Furue R, Nishimoto T, Yasuda T, et al. Angewandte Chemie International Edition, 2016, 55(25), 7171.
62 Park S Y, Choi S, Park G E, et al. ACS Applied Materials & Interfaces, 2018, 10(17), 14966.
63 Zhang Q, Sun S, Liu W, et al. The Journal of Physical Chemistry C, 2019, 7(31), 9487.
64 Wang Y F, Lu H Y, Shen Y F, et al. Chemical Communications, 2019, 55(64), 9559.
65 Wang X, Wang S, Lv J, et al. Chemical Science, 2019, 10, 2915.
66 Yan L Q, Kong Z N, Xia Y, et al. New Journal of Chemistry,2016, 40(8), 7061.
67 Huang B, Ji Y, Li Z, et al. Journal of Luminescence, 2017, 187, 414-420.
68 Li G, Nobuyasu R S, Zhang B, et al. Chemistry-A European Journal, 2017, 23(49), 11761.
69 Sun K, Jiang W, Ban X, et al. RSC Advances, 2016, 6(26), 22137.
70 Dong X, Wang S, Tang B Z, et al. Tetrahedron, 2018, 74(4), 497.
71 Song F, Xu Z, Zhang Q, et al. Advanced Functional Materials, 2018, 28(17), 1800051.
72 Xiang S, Huang Z, Sun S, et al. Journal of Materials Chemistry C, 2018, 6(42), 11436.
73 Yu L, Wu Z, Xie G, et al. Chemical Science, 2018, 9(5), 1385.
74 Kim H J, Kim S K, Godumala M, et al. Chemical Communications, 2019, 55(64), 9475.
75 Zhou X, Yang H, Chen Z, et al. Journal of Materials Chemistry C, 2019, 7(22), 6607.
76 Chen S, Zeng P, Wang W, et al. Journal of Materials Chemistry C, 2019, 7(10), 2886.
[1] 赵琦, 沈晓明, 符跃春, 何欢. 光子增强热电子发射(PETE)太阳能电池的研究进展[J]. 材料导报, 2020, 34(Z1): 1-6.
[2] 张香云, 杜进英, 袁子洲, 李金祺. Fe-Si-B非晶合金对溶液中Cu (Ⅱ)的去除效率[J]. 材料导报, 2020, 34(7): 7010-7014.
[3] 徐祺, 王三反, 孙百超. 双膜三室同槽电解金属锰和微粒电解二氧化锰的控制因素[J]. 材料导报, 2020, 34(14): 14016-14022.
[4] 郭鹏, 谢凤章, 孟建玮, 孟献春, 魏琳, 徐建, 冯云霞. 沥青再生过程中新-旧沥青界面混溶行为综述[J]. 材料导报, 2020, 34(13): 13100-13108.
[5] 孙佳南,许辉. 热激发延迟荧光分子的受体基团研究进展[J]. 材料导报, 2020, 34(1): 1135-1145.
[6] 卢刚, 杨振英, 何凤琴, 郑璐, 钱俊, 封先锋, 高嘉庆. N型背接触异质结太阳电池背面结构参数优化[J]. 材料导报, 2019, 33(z1): 45-49.
[7] 方文中, 孙韬, 端勇, 王盼, 倪子涛, 杨宇. Si/PEDOT∶PSS异质结太阳能电池研究进展[J]. 材料导报, 2019, 33(23): 3908-3914.
[8] 卢伶,张祥,赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展[J]. 材料导报, 2019, 33(15): 2589-2601.
[9] 何苗, 陈建林, 周厅, 彭卓寅, 任延杰, 陈荐. 陷光结构应用于太阳能电池的研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 696-707.
[10] 吴亚丹, 胡圳, 赵丽, 王世敏, 董兵海, 王二静, 郭海永. 上转换发光材料La(OH)3∶Er3+/Yb3+的制备及在染料敏化太阳能电池中的应用[J]. 《材料导报》期刊社, 2018, 32(5): 708-714.
[11] 马晨雨, 李晓禹, 张绘, 李建强, 赵建玲, 贺刚, 李江涛, 齐涛. 亚微米级Ti4O7的制备及其光热转换性能[J]. 材料导报, 2018, 32(23): 4079-4083.
[12] 义志涛, 何国强. 柔性热电发电器的关键工艺及其展望[J]. 材料导报, 2018, 32(19): 3332-3337.
[13] 朱琦,李云辉,赵学森,耿爱芳,马玉芹. 新型有机电致荧光材料研究进展[J]. 材料导报, 2018, 32(19): 3473-3477.
[14] 邹金龙, 罗玉峰, 肖宗湖, 胡云, 饶森林, 刘绍欢. 空穴传输材料在高效钙钛矿太阳能电池中的发展演变[J]. 材料导报, 2018, 32(15): 2542-2554.
[15] 万婷婷, 朱安康, 郭友敏, 汪春昌. 钙钛矿太阳能电池:从高效率到稳定性*[J]. 《材料导报》期刊社, 2017, 31(5): 16-22.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed