Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3473-3477    https://doi.org/10.11896/j.issn.1005-023X.2018.19.022
  高分子与聚合物基复合材料 |
新型有机电致荧光材料研究进展
朱琦,李云辉,赵学森,耿爱芳,马玉芹
长春理工大学化学与环境工程学院,长春 130022
Progress in Novel Organic Electrofluorescence Materials
ZHU Qi, LI Yunhui, ZHAO Xuesen, GENG Aifang, MA Yuqin
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022
下载:  全 文 ( PDF ) ( 1510KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机发光二极管因独特的优势被看作新一代的照明及平面显示技术,引起了研究人员的广泛关注。传统的荧光材料仅能利用单重态激子发光,因而效率并不理想。近年来,能够利用三重态激子能量发光的新型荧光材料的研究实现了新的突破。按照三重态激子到单重态激子的转化机理,荧光材料可以分为三重态-三重态湮灭、热致延迟荧光和局域电荷转移杂化激发态三种特殊类型。本文围绕着这几种类型的荧光材料展开了探讨,介绍了有机电致荧光器件的概况以及不同类型荧光材料的发光机理,并从分子设计的角度说明了高性能发光器件的设计思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱琦
李云辉
赵学森
耿爱芳
马玉芹
关键词:  有机电致发光  三重态激子荧光材料  发光效率    
Abstract: The organic light-emitting diodes (OLEDs) have aroused intense interests from researchers owing to their prospects as the next generation display and lighting technologies. Traditional fluorescent materials cannot obtain satisfactory efficiency because they only realize singlet exciton luminescence. In recent years, it has been a great breakthrough that the electrofluorescence materials utilizing triplet ections energy for radiation in organic electronics have been developed. According to the transformation mechanism of triplet excitons to singlet exciton, fluorescent materials can be divided into three types including triplet-triplet annihilation, thermally activated delayed fluorescence, hybridized local and charge transfer excited state. This article specially focuses on small molecule based purely organic electrofluorescence emitters with amazing device performances. It begins with the general situation of organic electrofluorescence devices, then gives an overview of the fluorescence emitters with various electrofluorescence mechanisms, and finally provides specific molecular design strategies towards high efficiency devices.
Key words:  organic electroluminescence    triplet excitons fluorescence materials    emission efficiency
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  O622  
基金资助: 吉林省发改委项目(2017C050)
作者简介:  朱琦:男,1992年生,硕士研究生,主要从事光电功能材料的研究 E-mail:qizhu@ciac.ac.cn; 李云辉:通信作者,女,1955年生,博士,教授,主要从事光电功能材料的研究 E-mail:1563813949@qq.com
引用本文:    
朱琦,李云辉,赵学森,耿爱芳,马玉芹. 新型有机电致荧光材料研究进展[J]. 材料导报, 2018, 32(19): 3473-3477.
ZHU Qi, LI Yunhui, ZHAO Xuesen, GENG Aifang, MA Yuqin. Progress in Novel Organic Electrofluorescence Materials. Materials Reports, 2018, 32(19): 3473-3477.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.022  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3473
1 Tang C W, VanSlyke S A. Organic electroluminenscentdiodes[J].Applied Physical Letters,1987,51:913.
2 Godumala M, Choi S, Ju M, et al. Thermally activated delayed fluorescence blue dopants and hosts: From the design strategy to organic light-emitting diode applications[J].Journal of Material Chemistry C,2016,4:11355.
3 Yang X L, Zhou G J, Wong W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices[J].Chemical Society Reviews,2015,10:11735.
4 Su S J. A new generation of organic light-emitting materials and device[J].Chinese Science Bulletin,2016,61(32):3448(in Chinese).
苏仕健.新一代有机电致发光材料与器件[J].科学通报,2016,61(32):3448.
5 Im Y, Byun S Y, Kim J H, et al. Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes[J].Advanced Materials,2017,27:1603007.
6 Chen Y H, Lin C C, Huang M J, et al. Superior upconversion flurscence dopants for highly efficient deep-blue electroluminescent devices[J].Chemical Science,2016,7:4044.
7 Adachi C, Baldo M A, Forrest S R, et al. Nearly 100% internal phosphorescence efficiency in an organic light emitting device[J].Journal of Applied Physis,2001,90(10):5048.
8 Pu Y J, Nakata G, Satoh F, et al. Optimizing the charge balance of fluorescent organic light emitting devices to achieve high external quantum efficiency beyond the conventional upper limit[J].Advanced Materials,2012,24:1675.
9 Zhou J, Chen P, et al. Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion[J].Chemical Communications,2014,50:7586.
10 Lyu Y Y, Kawk J, Kwon O, et al. Silicon-cored anthracene derivatives as host materials for highly efficient blue organic light emitting devices[J].Advanced Materials,2008,20:2720.
11 Wang J, Lou X, Liu Y Q, et al. Controllable molecular configuration for significant improvement of blue OLEDs based on novel twisted anthracene derivatives[J].Dyes and Pigments,2015,118:137.
12 Chou P Y, Chou H H, Chen Y H, et al. Efficient delayed fluorescence via triplet-triplet annihilation for deep-blue electroluminescence[J].Chemical Communication,2014,50:6869.
13 Fukagawa H, Shimizu T, Ohbe N, et al. Anthracence derivatives as efficient emitting hosts for blue organic light-emitting diodes utilizing triplet-triplet anninilation[J].Organic Electronics,2012,13:1197.
14 Zheng X J, Peng Q M, Lin J, et al. Simultaneous harvesting of triplet excitons in OLEDs by both guest and host materials with an intramolecular charge-transfer feature via triplet-triplet annihilation[J].Journal of Material Chemistry C,2015,3:6970.
15 Simth G C. Triplet exaction phosphorescence in crystalline anthracene[J].Physical Reviews,1968,166(3):839.
16 Hu J Y, Pu J Y, Staoh F, et al. Bisanthracene-based donor-acceptor-type light-emitting-dopants: Highly efficient deep-blue emission in organic light emitting devices[J].Advanced Functional Materials,2014,24:2064.
17 Lee K H, Kang L K, Lee J Y, et al. Molecular engineering of blue fluorescent molecules based on silicon end-capped diphenylaminof-luorene derivatives for efficient organic light emitting materials[J].Advanced Functional Materials,2010,20(8):1345.
18 Duan L, Qiu Y. Recent advances inorganic electroluminescent materials and devices[J].Chinese Journal of Material Research,2015,29(5):321(in Chinese).
段炼,邱勇.有机发光材料与器件研究进展[J].材料研究学报,2015,9(5):321.
19 Endo A, Ogasawara M, Takahashi A, et al. Thermally activated delayed fluorescence from Sn4+-phrphyrin complexes and their application to organic light emitting diodes—A novel mechanism for electroluminescence[J].Advanced Materials,2009,21(47):4802.
20 Uoyama H, Goushi K, Shizu K, et al. Highly efficient organic light-emitting diodes from delayed flurescence[J].Nature,2012,492:234.
21 Lin T A, Chatterjee T, Tsai W L, et al. Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from Spiroacridine-triazinehybrid[J].Advanced Materials,2016,28:6976.
22 Kim M, Jeon S K, Hwang S H, et al. Stable blue thermally activated delayed fluorescent organic light-emitting diodes with three times longer lifetime than phosphorescent organic light-emitting diodes[J].Advanced Materials,2015,27(15):2515.
23 Zhang Q S, Li J, Shizu K, et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes[J].Journal of American Chemistry Society,2012,134:14706.
24 Jankus V, et al. Deep blue exciplex organic light-emitting diodes with enhanced efficiency; p-type or e-type triplet conversion to singlet excitons?[J].Advanced Materials,2013,25:1455.
25 Endo A, Sato K, Yoshimura K, et al. Efficient up-conversion of triplet exctions into a singlet state and its application for organic light emitting diodes[J].Applied Physical Letters,2011,98:083302.
26 Tao Y, Yuan K, Chen T, et al. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics[J].Advanced Materials,2014,26:7931.
27 Gao Y, Zhang S T, Pan Y Y, et al. Hybridization and de-hybridization between thelocally-excited (LE) state and the charge-transfer(CT) state: A combined experimental and theoretical study[J].Physical Chemistry Chemical Physics,2016,18:24176.
28 Zhang Q S, Li B, Huang S P, et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence[J].Nature Photonics,2014,8:326.
29 Chen W C, Lee C S, Tong Q X. Blue-emitting organic electrofluorescence materials: Progress and prospective[J].Journal of Material Chemistry C,2015,3:10957.
30 Li W J, Liu D D, et al. A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence[J].Advanced Functional Materials,2012,22:2797.
31 Liu H C, et al. Efficient deep-blue non-doped organic light emitting diode with improved roll-off of efficiency based on hybrid local and charge-transfer excited state[J].RSC Advanced,2016,6:70085.
32 Zhang S T, Li W J, Yao L, et al. Enhanced proportion of radiative excitons in non-doped electro-fluorescence generated from an imida-zole derivative with an orthogonal donor-acceptor structure[J].Che-mistry Communication,2013,49:11302.
33 Zhang S T, Yao L, Peng Q M, et al. Achieving a significantly increased efficiency in nondoped pure blue fluorescent OLED: A quasi-equivalent hybridized excited state[J].Advanced Functional Mate-rials,2015,25:1755.
[1] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed