Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3478-3488    https://doi.org/10.11896/j.issn.1005-023X.2018.19.023
  高分子与聚合物基复合材料 |
纤维素化学改性的研究进展
姚一军1,王鸿儒1,2
1 陕西科技大学轻工科学与工程学院,西安 710021;
2 中国轻工业皮革清洁生产重点实验室,西安 710021
An Overview on Chemical Modification of Cellulose
YAO Yijun1, WANG Hongru1,2
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021;
2 Key Laboratory of Leather Cleaner Production, China National Light Industry,Xi’an 710021
下载:  全 文 ( PDF ) ( 2732KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维素作为自然界来源丰富的天然高分子材料,具有可再生、生物相容性好、可完全生物降解等优越性能,是最有潜力的绿色材料之一,对纤维素资源的有效利用已成为化学、化工和材料科学领域的研究热点。目前,纤维素的研究主要集中在以下三个方面:(1)寻找环境友好的溶剂体系,对纤维素溶液直接加工;(2)利用化学反应,减弱纤维素分子内及分子间氢键作用,制备可溶解在普通溶剂中的纤维素衍生物或接枝共聚物;(3)以纤维素衍生物为结构单元,通过引入特定基团或其他高聚物修饰来构建新型纤维素功能材料。
然而,由于缺乏有效的纤维素溶剂,传统的纤维素改性均在多相介质中进行,存在工艺复杂、产品均一性差、结构控制困难及能耗高等问题,研究可发生化学反应的纤维素新溶剂体系成为解决这一问题的有效途径。在过去的几十年里,人们开发了多种新溶剂体系来溶解和加工纤维素,如N,N-二甲基乙酰胺/氯化锂(DMAc/LiCl)、聚甲醛/二甲基亚砜(PF/DMSO)、二甲基亚砜/三水合四丁基氟化铵(DMSO/TBAF·3H2O)、N-甲基吗啉-N-氧化物(NMMO)、离子液体(ILs)、熔盐水合物、碱/尿素/水体系等。其中,DMAc/LiCl和ILs具有极强的化学稳定性,是纤维素均相酯化和接枝共聚的理想溶剂,碱/尿素/水体系由于碱的存在是纤维素进行均相醚化的优异介质。纤维素的均相化学改性为开发简单、经济、高效、高品质的纤维素基功能材料提供了新的途径。
在上述体系中,以纤维素为原料已加工成不同类型的再生纤维素材料(再生纤维素纤维、膜、水凝胶、气凝胶、复合材料)及多种纤维素衍生物(纤维素酯、醚、接枝共聚物)。其中,TEMPO体系氧化反应、醛基-氨基的席夫碱反应、共价交联反应、叠氮-炔烃环加成反应、巯基-烯基的“点击化学”反应、活性/可控自由基聚合反应如原子转移自由基聚合(ATRP)、氮氧稳定的自由基聚合(NMP)及可逆加成断裂链转移聚合(RAFT),已成为纤维素基高聚物制备技术的发展态势,为纤维素的加工与功能化提供了新的多用途平台,在药物控释、污水净化、造纸行业、涂层材料等领域有广泛的应用。此外,纤维素衍生物除单独使用外,还可作为结构单元构筑具有新型结构与功能的纤维素材料,形成的接枝聚合物在特定条件下可表现出自组装行为。
本文归纳了氧化纤维素的研究进展,综述了纤维素衍生物的最新制备方法及应用,介绍了基于交联纤维素构建纤维素水凝胶的发展现状,对比分析了传统自由基聚合、离子聚合、开环聚合及活性/可控自由基聚合制备纤维素接枝共聚物的原理与特点,最后探讨了未来纤维素的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚一军
王鸿儒
关键词:  醋酸纤维素  丙烯纤维素  接枝共聚物  纤维素水凝胶  自组装    
Abstract: Cellulose, as one of the most abundant natural polymer and the most promising green materials with renewability, biocompatibility and biodegradability, etc., has become a hot spot for its effective utilization in the fields of chemistry, chemical engineering and materials science. The recent research of cellulose is mainly concentrated in the following three aspects: Ⅰ. the direct processing of the cellulose solution formed from environment-friendly solvent systems; Ⅱ. the preparation of cellulose derivative or graft copolymer which can be dissolved in common solvent by attenuating the intra- and inter-molecular hydrogen bonding interactions of cellulose via chemical modification; Ⅲ. the construction of novel cellulose functional materials by introducing specific chemical groups or other polymers into the cellulose derivatives structural units.
On the other hand, the cellulose chemical modification reactions are conventionally carried out in multiphase medium, due to the lack of effective solvent for cellulose, resulting in complex process, poor product homogeneity, difficulty in structure control and high energy consumption, etc. Thus the development of new solvent systems for cellulose chemical reaction has been regarded as a plausible countermeasure. In the past few decades, there have emerged a variety of solvent systems which are more effective in dissolving cellulose, including N,N-dimethylacetamide/lithium chloride (DMAc/LiCl), polyoxymethylene/dimethyl sulfoxide (PF/DMSO), DMSO/tetrabutylammonium fluoride trihydrate (DMSO/TBAF·3H2O), N-methylmorpholine oxide (NMMO), ionic liquids (ILs), some molten salt hydrates, alkali/urea aqueous systems, etc. Among them, DMAc/LiCl and ILs have displayed the potential as the ideal solvents for homogeneous esterification and graft copolymerization of cellulose, mainly for their high chemical stability. Alkali/urea aqueous systems are considered to be excellent medium for homogeneous etherification of cellulose due to the existence of alkali. The homogeneous chemical modification of cellulose opens a new way for the development of simple, economical, efficient and highly qualitative cellulose-based functional materials.
By adopting the above mentioned systems, an extensive range of cellulose-based materials (e.g., regenerated cellulose fibers, films, hydrogels, aerogels, composites, and cellulose esters, ethers, graft copolymers) have been fabricated successfully from cellulose as raw material. The TEMPO-mediated oxidation, aldehyde-amino Schiff reaction, covalent crosslinking, azide-alkyne cycloaddition, thiol-ene "click chemistry" reaction, living/controlled free radical polymerization such as atom transfer radical polymerization (ATRP), nitroxide-mediated living free-radical polymerizations (NMP) and reversible addition fragmentation chain transfer polymeri-zation (RAFT), have assumed future-representativeness in the preparation of cellulose based polymers. These revamped methods establish a new and versatile platform for cellulose processing and functionalization, providing satisfactory and widely applicable cellulose-based products for drug delivery and controlled release, sewage purification, papermaking, coating fabrication. In addition, cellulose derivatives can also be used as structural units to construct cellulose materials with novel structure or functions. The formed graft polymers are able to demonstrate self-assembly behavior under certain circumstances.
This review makes a retrospection of the research efforts with respect to oxycellulose, and the homogeneous derivatization and graft copolymerization of cellulose through which can novel functionallized cellulose materials be obtained, then sketches out the advances in creating cellulose hydrogels by crosslinking of cellulose. We comparatively analyse the principles and characteristics of synthesizing cellulose graft copolymers by traditional free radical polymerization, ionic polymerization, ring-opening polymerization (ROP) and living/controlled free radical polymerization, and finally outline the future development trend.
Key words:  cellulose acetate    allyl cellulose    graft copolymer    cellulose hydrogel    self-assembly
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TQ35  
基金资助: 陕西省科技厅自然科学基金(2007B13);陕西科技大学研究生创新基金
作者简介:  姚一军:男,1990年生,博士研究生,研究方向为纤维材料与化学 E-mail:1287429928@qq.com 王鸿儒:通信作者,男,1959年生,博士,教授,博士研究生导师,研究方向为生物质材料的开发 E-mail:wanghr@sust.edu.cn;
引用本文:    
姚一军,王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 3478-3488.
YAO Yijun, WANG Hongru. An Overview on Chemical Modification of Cellulose. Materials Reports, 2018, 32(19): 3478-3488.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.023  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3478
1 Wang S, Lu A, Zhang L N. Recent advances in regenerated cellulose materials[J].Progress in Polymer Science,2016,53:169.
2 Liu C, Tan Z, Li H M, et al. Research progress in cellulose extraction, modification and application[J].Materials Science Forum,2016,852:1194.
3 Zhou J P, Gan W P, Zhang L N. Progress on homogeneously chemical modification of cellulose[J].Scientia Sinica Chimica,2012,42(5):591(in Chinese).
周金平,甘蔚萍,张俐娜.均相体系中纤维素化学改性研究概述[J].中国科学:化学,2012,42(5):591.
4 Amine B, Rene K, Anton B, et al. Nanostructured cellulose-xyloglucan blends via ionic liquid/water processing[J].Carbohydrate Polymers,2017,168:163.
5 Courtenay J C, Johns M A, Galembeck F, et al. Surface modified ce-llulose scaffolds for tissue engineering[J].Cellulose,2017,24:253.
6 Kang H L, Liu R G, Huang Y. Graft modification of cellulose:Methods, properities and applications[J].Polymer,2015,70:A1.
7 Masayuki H, Naoyuki T, Tsuguyuki S, et al. Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH4.8[J].Cellulose,2010,17(2):279.
8 Sang X H, Qin C R, Tong Z F, et al. Mechanism and kinetics stu-dies of carboxyl group formation on the surface of cellulose fiber in a TEMPO-mediated system[J].Cellulose,2017,24(6):2415.
9 Fraschini C, Chauve G. TEMPO-mediated surface oxidation of cellulose nanocrystals(CNCs)[J].Cellulose,2017:24(7):2775.
10 Le X, Dong C J, An J J, et al. Oxidation of waste paper pulp by TEMPO oxidation system[J].Packaging Engineering,2016,37(19):54(in Chinese).
乐喜,董存军,安俊键,等.TEMPO氧化体系对废纸浆纤维的氧化改性[J].包装工程,2016,37(19):54.
11 Yin X, Koschella A, Heinze T. Regioselectively oxidized 3-O-alkyl ethers of cellulose:Synthesis and characterization[J].Reactive & Functional Polymers,2009,69:341.
12 Noriyuki I, Chen X X, Kim U J, et al. TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent[J].Journal of Hazardous Materials,2013,260(1):195.
13 Cheng W L, He J M, Wu Y D, et al. Preparation and characterization of oxidized regenerated cellulose film for hemostasis and the effect of blood on its surface[J].Cellulose,2013,20(5):2547.
14 Fu S Y, Yu C H, Wang F. Fabrication of superhydrophobic cellulose membranes via covalent layer-by-layer assembled of nanoparticles[C]∥The 30th Annual Conference of Chinese Chemical Society. Liaoning,2016.
15 Meulendijks N, Burghoorn M, Ee R V, et al. Electrically conductive coatings consisting of Ag-decorated cellulose nanocrystals[J].Cellulose,2017,24:2191.
16 Juho S, Uula H, Henrikki L, et al. Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators[J].Carbohydrate Polymers,2011,83(3):1293.
17 Sun B, Hou Q X, Liu Z H, et al. Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive[J].Cellulose,2015,22(2):1135.
18 Wang X L, Fang G Z, Dai X F, et al. Preparation of dialdehyde cellulose and adsorption for urea[J].Scientia Silvae Sinicae,2011,47(4):141.
19 Cheng Y M, Lu J T, Liu S L, et al. The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films[J].Carbohydrate Polymers,2014,107:57.
20 Liu X D, Nishi N, Tokura S, et al. Chitosan coated cotton fiber: Preparation and physical properties[J].Carbohydrate Polymers,2001,44:233.
21 Yao L R, Lin H, Chen Y Y, et al. Covalence structure of oxidized cotton fiber treated by fibroin solution[J].Journal of Textile Research,2008,2(2):11(in Chinese).
姚理荣,林红,陈宇岳,等.丝素蛋白氧化棉纤维的共价结构分析[J].纺织学报,2008,2(2):11.
22 Zhang F, Chen Y Y, Zhang D S, et al. Preparation and dyeing pro-perties of the HPB-NH2 grafted oxidized cotton fibers[J].Journal of Textile Research,2008,29(10):73(in Chinese).
张峰,陈宇岳,张德锁,等.HBP-NH2接枝氧化棉纤维的制备及其染色性能[J].纺织学报,2008,29(10):73.
23 Zhang J M, Chen W W, Feng Y, et al. Homogeneous esterification of cellulose in room temperature ionic liquids[J].Polymer International,2015,64(8):963.
24 Zhang J M, Wu J, Yu J, et al. Processing and functionalization of cellulose with ionic liquids[J].Acta Polymerical Sinica,2017(7):1058(in Chinese).
张金明,武进,余坚,等.以离子液体为介质的纤维素加工与功能化[J].高分子学报,2017(7):1058.
25 Ramos L A, Morgado D L, Seoud Q A E, et al. Acetylation of cellulose in LiCl/N,N-dimethylacetamide:First report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose[J].Cellulose,2011,18(2):385.
26 Cao Y, Zhang J, He J, et al. Homogeneous acetylation of cellulose at relatively high concentrations in an ionic liquid[J].Chinese Journal of Chemical Engineering,2010,18(3):515.
27 Cao Y, Li H, Zhang J. Homogeneous synthesis and characterization of cellulose acetate butyrate (CAB) in 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid[J].Industrial & Engineering Chemistry Research,2011,50(13):7808.
28 Zhang K, Brendler E, Geissler A, et al. Synthesis and spectroscopic analysis of cellulose sulfates with regulable total degrees of substitution and sulfation patterns via13C NMR and FT-IR aman spectroscopy[J].Polymer,2011,2:26.
29 Crepyl L, Miri V, Joly N, et al. Effect of side chain length on structure and thermomechanical properties of fully substituted cellulose fatty esters[J].Carbohydrate Polymers,2011,83:1812.
30 Liu S, Edgar K J. Water-soluble co-polyelectrolytes by selective modification of cellulose esters[J].Carbohydrate Polymers,2017,162:1.
31 Li W, Li T T, Li G C, et al. Electrospun H4SiW12O40/cellulose acetate composite nanofibrous membrane for photocatalytic degradation of tetracycline and methylorange with different mechanism[J].Carbohydrate Polymers,2017,168:153.
32 Fu F Y, Yang Q L, Zhou J P, et al. Structure and properties of regenerated cellulose filaments prepared from cellulose carbamate-NaOH/ZnO Aqueous Solution[J].ACS Sustainable Chemistry & Engineering,2014,2:2604.
33 Fu F Y, Guo Y, Wang Y, et al. Structure and properties of the regenerated cellulose membranes prepared from cellulose carbamate in NaOH/ZnO aqueous solution[J].Cellulose,2014,21(4):2819.
34 Fu F Y, Li L Y, Liu L J, et al.Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation[J].ACS Applied Materials & Interfaces,2015,7:2597.
35 Song Y, Gan W, Li Q, et al. Alkaline hydrolysis and flocculation properties of acrylamide-modified cellulose polyelectrolytes[J].Carbohydrate Polymers,2011,86:171.
36 Li Q, Wu P J, Zhou J P. Structure and solution properties of cya-noethyl celluloses synthesized in LiOH/urea aqueous solution[J].Cellulose,2012,19:161.
37 Jiang Z W, Lu A, Zhou J P. Interaction between-OH groups of methylcellulose and solvent in NaOH/urea aqueous system at low temperature[J].Cellulose,2012,19(3):671.
38 Zhou J, Zhang L, Deng Q, et al. Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions[J].Journal of Polymer Science Part A:Polymer Chemistry,2004,42(23):5911.
39 Qi H, Liebert T, Meister F, et al. Homogenous carboxymethylation of cellulose in the new alkaline solvent LiOH/urea aqueous solution[J].Macromolecular Symposia,2010,294(2):125.
40 Li M F, Sun S N, Xu F, et al. Cold NaOH/urea aqueous dissolved cellulose for benzylation: Synthesis and characterization[J].Euro-pean Polymer Journal,2011,47(9):1817.
41 Hu H Z, You J, Gan W P, et al.Synthesis of allyl cellulose in NaOH/urea aqueous solutions and its thiol-ene click reactions[J].Polymer Chemistry,2015,6:3543.
42 Zhang L, Guo Y Z, Zhou J H, et al. Homogeneous synthesis and characterization of quaternized cellulose derivatives in NaOH-urea aqueous solutions[J].PBM Cellulose Derivatives,2016,1(1):15.
43 You L, Zhao L G, Wang G W, et al.Quaternized cellulose-supported gold nanoparticles as capillarycoatings to enhance protein separation by capillary electrophoresis[J].Journal of Chromatography A,2014,1343:160.
44 Aguado R, Lourenco A F, Ferreira P J, et al. Cationic cellulosic derivatives as flocculants in papermaking[J].Cellulose,2017,24(7):3015.
45 Zhou H L, Huang D H, Zhou P. A novel amphiphilic cellulose deri-vative for capillary electrophoresis separation[J].Journal of Analytical Science, 2015,31(6):746(in Chinese).
周海龙,黄迪惠,周平.一种两亲性纤维素衍生物应用于毛细管电泳分离的研究[J].分析科学学报,2015,31(6):746.
46 Zhang L Z, Zhao C C, Zhou J P, et al. Fluorescent micelles based on hydrophobically modified cationic cellulose for sensing trace explosives in aqueous solutions[J].Journal of Material Chemistry C,2013,1:5756.
47 Qin W, Li Z J, Li J X, et al. Synthesis and characterization of azobenzene hydroxypropyl cellulose with photochromic and thermotro-pic liquid crystal properties[J].Cellulose,2015,22(1):203.
48 Li P P, Kang H L, Zhang C, et al. Reversible redox activity of ferrocene functionalized hydroxypropyl cellulose and its application to detect H2O2[J].Carbohydrate Polymers,2016,140:35.
49 Duan H T, Shao Z Q, Zhao M, et al. Preparation and properties of environmental-friendly coatings based on carboxymethyl cellulose nitrate ester & modified alkyd[J].Carbohydrate Polymers,2016,137:92.
50 Song Y B, Zhou Y, Chen L Y. Wood cellulose-based polyelectrolyte complex nanoparticles as protein carriers[J].Journal of Materials Chemistry,2012,22(6):2512.
51 Monireh R, Hassan N. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent[J].Carbohydrate Polymers,2017,168:320.
52 Liang H S, He L, Zhou B, et al. Folate-functionalized assembly of low density lipoprotein/sodium carboxymethyl cellulose nanoparticles for targeted delivery[J].Colloids and Surfaces B: Biointerfaces,2017,156:19.
53 Wang Y X, Wang Z C, Wu K L, et al. Synthesis of cellulose-based double-network hydrogels demonstrating high strength,self-healing,and antibacterial properties[J].Carbohydrate Polymers,2017,168:112.
54 Sara R L, Kashmira V, Jari S K, et al. Amination and thiolation of chloroacetyl cellulose through reactivedissolution in N,N-dimethyl-formamide[J].Carbohydrate Polymers,2015,116:60.
55 Zhang L Z, Zhou J P, Zhang L. Structure and properties of β-cyclodextrin/cellulose hydrogels prepared in NaOH/urea aqueous solution[J].Carbohydrate Polymers,2013,94:386.
56 Yuan Z W, Zhang J J, Jiang A N, et al. Fabrication of cellulose self-assemblies and high-strength ordered cellulose films[J].Carbohydrate Polymers,2015,177:414.
57 George S, Alina N, Alexandra N, et al. Chemicalmodification of cellulose acetate by allylation and crosslinking with siloxane derivatives[J].Polymer International,2012, 61(7):1115.
58 Müller M, Keler B. Release of pamidronate from poly(ethyleneimine)/cellulose sulphate complex nanoparticle films: An in situ ATR-FTIR study[J].Journal of Pharmaceutical and Biomedical Analysis,2012,66:183.
59 Kalaoglu A  I, nlü C H, Galioglu A O. Synthesis, characterization and electrospinning of corn cob cellulose-graft-polyacrylonitrile and their clay nanocomposites[J].Carbohydrate Polymers,2016,147:37.
60 Shukla S K. Synthesis and characterization of polypyrrole grafted cellulose for humidity sensing[J].International Journal of Biological Macromolecules,2013,62:531.
61 Zhang X, Yang L, Xiong X P. In-situ grafting polymerization of acrylamide onto regenerated cellulose film and its application[J].Journal of Xiamen University(Natural Science),2017,56(4):481(in Chinese).
张潇,杨乐,熊晓鹏.原位聚合法制备聚丙烯酰胺接枝纤维素复合膜及其应用[J].厦门大学学报(自然科学版),2017,56(4):481.
62 Xu Y G, Zhang H, Huang L L, et al. Preparation of acrylic acid modified cellulose acetate ultrafiltration membrane[J].Journal of Forestry Engineering,2017,2(1):90(in Chinese).
许耀光,张慧,黄六莲,等.丙烯酸/醋酸纤维素超滤膜的改性及制备[J].林业工程学报,2017,2(1):90.
63 Yang L L, Zhang J M, He J S, et al. Fabrication, hydrolysis and cell cultivation of microspheres from cellulose-graft-poly(L-lactide) copolymers[J].RSC Advances,2016,21(6):17617.
64 Yan C H, Wu J, Zhang J M, et al. Hydrolytic degradation of cellulose-graft-poly(l-lactide) copolymers[J].Polymer Degradation and Stability,2015,118:130.
65 Guo Y Z, Zhang L, Wang X. Synthesis, characterization and self-assembly behavior of cellulose-g-PCL amphiphilic copolymers[J].Polymeric Materials Science and Engineering,2015,31(8):16.
66 Ge W J, Guo Y Z, Zhong H Q. Synthesis, characterization, andmicellar behaviors of hydroxyethyl cellulose-graft-poly(lactide/e-caprolactone/p-dioxanone)[J].Cellulose,2015,22:2365.
67 Zhong J F, Chai X S, Fu S Y. Homogeneous grafting poly(methyl methacrylate) on cellulose by atom transfer radical polymerization[J].Carbohydrate Polymers,2012,87(2):1869.
68 Tang E, Du K, Feng X, et al. Controlled synthesis of cellulose-graft-poly[2-(diethylamino)-ethyl methacrylate] by ATRP in ionic liquid AMIMCl and its pH-responsive property[J].European Polymer Journal,2015,66:228.
69 Yagi S, Kasuya N, Fukuda K. Synthesis and characterization of cellulose-b-polystyrene[J].Polymer Journal,2010,42(4):342.
70 Wang Z, Zhang Y, Jiang F, et al. Synthesis and characterization of designed cellulose-graft-polyisoprene copolymers[J].Polymer Che-mistry, 2014,5(10):3379.
71 Qiu X, Ren S, Hu S. Fabrication of dual-responsive cellulose-based membrane via simplified surface-initiated ATRP[J].Carbohydrate Polymers,2013,92(2):1887.
72 Qian X, Fan H, Wang C, et al. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine[J].Applied Surface Science,2013,271:240.
73 Wang M, Yuan J, Huang X B, et al. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility[J].Colloids and Surfaces B: Biointerfaces,2013,103:52.
74 Hemraz U, Campbell K, Burdick J, et al. Cationic poly(2-aminoethylmethacrylate) and poly(N-(2-aminoethyl methacrylamide) modified cellulose nanocrystals: Synthesis, characterization, and cytoto-xicity[J].Biomacromolecules,2015,16:319.
75 Hemraz U, Campbell K, Burdick J, et al. Structure of poly(N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions[J].Journal of Colloid and Interface Science,2014,430:157.
76 Yuan W, Zou H, Shen J. Amphiphilic graft copolymers with ethyl cellulose backbone: Synthesis, self-assembly and tunable temperature-CO2 response[J].Carbohydrate Polymers,2016,136:216.
77 Yu J, Liu Y, Wang C, et al. Integration of renewable cellulose and rosin towards sustainable copolymers by “grafting from” ATRP[J].Green Chemistry,2014,16(4):1854.
78 Kan K H, Li J, Wijesekra K, et al. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants[J].Biomacromolecules, 2013,14(9):3130.
79 Li P P, Kang H L, CHE N, et al. Synthesis, self-assembly and redox-responsive properties of well-defined hydroxypropyl cellulose-graft-poly(2-acryloyloxyethyl ferrocenecarboxylate) copolymers[J].Polymer International,2015,64(8):1015.
80 Ci J L, Kang H L, Liu C G, et al. Thermal sensitivity and protein anti-adsorption of hydroxypropyl cellulose-g-poly(2-(methacryloyloxy) ethyl phosphorylcholine)[J].Carbohydrate Polymers,2017,157:757.
81 William H D, Timothy S, Scott T L, et al. Recent developments in cellulose grafting chemistry utilizing Barton ester intermediates and nitroxidemediation[J].Macromolecular Symposia,2001,174:155.
82 Liu Y D, Jin X S, Zhang X S, et al. Self-assembly and chiroptical property of poly (N-acryloyl-L-amino acid) grafted celluloses synthesized by RAFT polymerization[J].Carbohydrate Polymers,2015,117:312.
[1] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[2] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[3] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[4] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[5] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[6] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[7] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[8] 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况*[J]. 《材料导报》期刊社, 2017, 31(5): 40-45.
[9] 马明亮, 林静, 万菲, 马衍轩, 冯超, 卢桂霞, 张家栋. 有机-无机杂化一维磁性自组装聚合物纳米链的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 29-33.
[10] 王裕祥,冯传良. 羧基化碳纳米管增强的杂化超分子水凝胶及其物理性能*[J]. 材料导报编辑部, 2017, 31(10): 41-46.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed