Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21020083-9    https://doi.org/10.11896/cldb.21020083
  金属与金属基复合材料 |
基于增材制造技术快速模具制造研究进展
邹伟1, 黄锦涛2, 程春1, 王光宏1, 王伟平1, 刘屹东2, 闵永刚2, 吕建忠3
1 江苏师范大学机电工程学院,江苏 徐州 221116
2 广东工业大学材料与能源学院,广州 510006
3 大连海博瑞思科技有限公司,辽宁 大连 116024
Research Progress of Rapid Tooling Based on Additive Manufacturing
ZOU Wei1, HUANG Jintao2, CHENG Chun1, WANG Guanghong1, WANG Weiping1, LIU Yidong2, MIN Yonggang2, LYU Jianzhong3
1 School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou 221116,Jiangsu, China
2 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
3 Dalian Hybridwise Technology Company Limited, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 4888KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 增材制造又称3D打印,是一种基于离散堆积原理的数字化制造技术,具有高度灵活性和快速性等优势,近年来受到广泛关注。采用增材制造技术制造模具,可以降低生产成本、缩短制造周期,并能快速响应客户对模塑制品的个性化需求。
基于增材制造的快速模具制造又称快速模具技术(Rapid tooling),根据增材制造件是否直接作为模具使用,快速模具分为间接快速模具和直接快速模具。根据模具材料的硬度,快速模具分为硬模和软模。间接快速模具由增材制造件间接制造软模(比如硅胶模具)发展成为间接制造硬模。由于间接制模存在工艺复杂、精度不高且软模存在寿命短等缺点,随着增材制造和材料技术的发展,直接快速硬模越来越受到重视。
本文主要综述了基于增材制造快速模具技术的发展历程、工艺原理、典型速模具工艺,并对这些快速模具制造工艺进行对比分析。同时综述了基于增减材复合制造的快速模具制造的基本原理、典型工艺及其特点和快速模具所使用的新型材料。由于快速模具制造存在精度低、表面质量差、模具内部有缺陷且力学性能存在各向异性、模具尺寸受限和成本高等缺陷,未来快速模具制造技术将向高精度、高表面质量、高力学性能及低成本方向发展,并向基于增减材复合制造的快速模具制造发展,同时模具制造过程中的缺陷检测与控制将成为研究热点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹伟
黄锦涛
程春
王光宏
王伟平
刘屹东
闵永刚
吕建忠
关键词:  增材制造  快速模具  增减材复合制造  模具    
Abstract: Additive manufacturing, also known as 3D printing, is a digital manufacturing technology based on discrete stacking principle. Due to its high flexibility and rapidity, additive manufacturing has received widespread attention. It can reduce the production cost, shorten the manufacturing cycle, and quickly respond to the personalized needs of customers for molded products with additive manufacturing technology to manufacture mold or die.
Rapid tooling based on additive manufacturing(AM) is also known as rapid tooling technology. According to whether the part based on additive manufacturing is directly used as a mold or die, rapid tooling is divided into indirect rapid tooling and direct rapid tooling. According to the hardness of the mold or die material, rapid tooling is divided into hard tooling and soft tooling. Indirect rapid tooling has developed from indirect soft tooling such as silicone tooling, to indirect hard tooling. Due to the complex process and low precision of indirect rapid tooling and short life of soft tooling, with the development of additive manufacturing and material, more and more attention has been paid to direct rapid tooling in recent years.
This article mainly reviews the development history, process principle and typical process of rapid tooling based on additive manufacturing, and compares and analyzes these processes of rapid tooling. Meanwhile, it summarizes the basic principles, typical processes and characteristics of rapid tooling based on additive-subtractive hybrid manufacturing, and new materials used in rapid tooling. For rapid tooling, there are many drawbacks such as low precision, poor surface quality, internal defects of the mold or die, anisotropy of mechanical properties, limited size of mold or die and high cost. Therefore, rapid tooling will trend to high precision, high surface quality, high mechanical properties and low cost. The additive and subtractive hybrid manufacturing will be applied more than additive manufacturing. At the same time, the defect detection and control in the rapid tooling will become a research hotspot.
Key words:  additive manufacturing    rapid tooling    additive-subtractive hybrid manufacturing    die and mold
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TH16  
基金资助: 国家自然科学基金委青年项目(52003111;U20A20340);江苏师范大学自然科学基金(18XLRS009;16XLR018);国家重点研发计划项目(2020YFB0408100);“珠江人才计划”引进创新创业团队(2016ZT06C412)
通讯作者:  polyhjt@163.com; jintao.huang@gdut.edu.cn   
作者简介:  邹伟, 2003年6月毕业于江西理工大学机电工程学院,获得工学学士学位,2016年10月在华南理工大学国家聚合物工程研究中心取得博士学位,2019年7月至2020年7月在美国佐治亚理工学院访学一年,现为江苏师范大学机电工程学院教师。主要从事聚合物加工新理论及成型设备、增材制造研究,在聚合物加工及其相关领域发表论文10余篇,获专利4项。
黄锦涛,博士。2009年本科及2012年硕士毕业于四川大学高分子科学与工程学院;2015年博士毕业于华南理工大学机械与汽车工程学院。2021.1起,在广东工业大学全职工作,担任材料与能源学院副教授。近年来在Chemical Engineering Journal、Composites Part B: Engineering、Solar Energy Materials & Solar Cells等期刊发表SCI论文30余篇,其中第一/通讯作者论文20余篇,获专利10余项。
共同第一作者
引用本文:    
邹伟, 黄锦涛, 程春, 王光宏, 王伟平, 刘屹东, 闵永刚, 吕建忠. 基于增材制造技术快速模具制造研究进展[J]. 材料导报, 2022, 36(19): 21020083-9.
ZOU Wei, HUANG Jintao, CHENG Chun, WANG Guanghong, WANG Weiping, LIU Yidong, MIN Yonggang, LYU Jianzhong. Research Progress of Rapid Tooling Based on Additive Manufacturing. Materials Reports, 2022, 36(19): 21020083-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020083  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21020083
1 Yan Y, Li S, Zhang R. Tsinghua Science and Technology, 2009, 14(S1), 1.
2 Chua C K, Leong K. F, Lim C S. Assembly Automation, 2010, 30(4),1.
3 Li H, Taylor G, Bheemreddy V. Additive Manufacturing, 2015, 7,64.
4 Zhu F L, Ping X L, Pan C F, et al. Machinery Design & Manufacture, 2007(3),155(in Chinese).
朱发林,平雪良,潘朝芳,等. 机械设计与制造, 2007 (3),155.
5 Cui Y, Zhao J, Zhang Y E. Die & Mould Industry, 2009, 35(5),68(in Chinese).
崔怡, 赵娟, 张月娥. 模具工业, 2009, 35(5),68.
6 Zakaria K, Ma'aram A, Ngadiman N H A, et al. Journal of Mechanical Engineering and Sciences, 2020, 14(1), 6417.
7 Wang Y Q, Jie Z, Cui Y L, et al. Materials for Mechanical Engineering, 2007 (12),51(in Chinese).
王延庆, 吉喆, 崔永莉,等.机械工程材料, 2007(12),51.
8 Tan Y S. Aeronautical Manufacturing Technology, 2000(1),26(in Chinese).
谭永生.航空制造技术, 2000 (1),26.
9 Yue Y F, Zhou Y G, He L N. Manufacturing Automation, 2013, 35(13),1(in Chinese).
岳彦芳, 周云光, 何林楠. 制造业自动化, 2013, 35(13),1.
10 Wang J P, Wang Y Q, Han F, et al. Die & Mould Industry, 2007 (6),65(in Chinese).
孙金平,王延庆,韩飞,等. 模具工业,2007(6),65.
11 Kuo C C, Zhuang B C. Material Science& Engineering Technology, 2016, 47(1),29.
12 Huang J T, Luo Y, Weng M M, et al. ES Materials and Manufacturing, 2021,13,23.
13 Rahmati S, Dickens P. International Journal of Machine Tools & Manufacture, 2007, 47(5),740.
14 Zhou H H, Shan Z D, Liang J J. Foundry Technology, 2001(4),41(in Chinese).
周赫赫, 单忠德, 梁剑江,铸造技术, 2001(4),41.
15 Zhang R J, Yan Y N, Shan Z D. Electroma Chining & Mould, 2000(3),33(in Chinese).
张人佶, 颜永年, 单忠德.电加工与模具, 2000(3),33.
16 Chang C C, Lo H C, Li Y T. IOP Conference Series, Materials Science and Engineering, 2019, 644,1.
17 Grant P S, Duncan S R, Roche A. Journal of Thermal Spray Technology, 2006, 15(4), 796.
18 Segal J, Campbell R. Rapid Prototyping Journal, 2001, 7,90.
19 Xie S X, Chi J C, Wei R Q. Die & Mould Industry, 2012, 38(12),56(in Chinese).
谢士兴, 池金春, 魏润强. 模具工业, 2012, 38(12),56.
20 Gu Z W, Quan Y Y, Zhang R J. Die & Mould Industry, 2003 (12),50.
谷诤巍, 全永义, 张人佶. 模具工业, 2003(12),50.
21 Luo Y H, Zhang H O, Wang G L. Metal Forming Machinery, 2001, 36(6),43(in Chinese).
罗云华, 张海鸥, 王桂兰. 锻压装备与制造技术, 2001, 36(6),43.
22 Zhang H, Wang G, Luo Y, et al. Thin Solid Films, 2001, 390(1-2), 7.
23 Tang T Q, Zhang R, Yang J. Hot Working Technology, 2009, 38(19),142(in Chinese).
唐田秋, 张蓉, 阳建. 热加工工艺, 2009, 38(19),142.
24 Gao J Y. Study on motion control based arc spraying rapid molding equipment and technics. Master's Thesis, Guangdong University of Technology, China, 2012 (in Chinese).
高静远. 基于运动控制卡的电弧喷涂快速制模设备及工艺研究. 硕士学位论文, 广东工业大学, 2012.
25 Li Y P, Zhu D B, Lu B H. China Mechanical Engineering, 2006 (S1),243 (in Chinese).
李延平, 朱东波, 卢秉恒. 中国机械工程, 2006 (S1),243.
26 Zhang H B, Li D Y, Zhang Z L. Welding Technology, 2010,39(2),29.
张洪兵,李德元,张忠礼.焊接技术,2010,39(2),29.
27 Cao C. Research on key technologies in rapid manufacturing process of zinc-based alloy moulds. Ph.D. Thesis, Lanzhou University of Technology, China, 2009 (in Chinese).
曹驰. 锌基合金模具快速制造关键技术研究.博士学位论文,兰州理工大学,2009.
28 Kalami H, Urbanic R J. The International Journal of Advanced Manufacturing Technology, 2019, 105(9), 3797.
29 Li H P, Zhao G Q, Xie X L. Aeronautical Manufacturing Technology, 2003(10),24(in Chinese).
李辉平, 赵国群, 解晓龙. 航空制造技术, 2003(10),24.
30 Nagahanumaiah K, Ravi B. Computers in Industry, 2008, 59(2-3),262.
31 Masood S H, Song W Q. Materials & Design, 2004, 25(7), 587.
32 Davoudinejad A, Charalambis A, Pedersen D B, et al. In:Proceedings of PPS-33:the 33rd International Conference of the Polymer Processing Society. Cancun, 2019, pp. 190006.
33 Mitterlehner T, Beisteiner C, Rieger H, et al. In:Proceedings of the SPE ANTEC, Anaheim, California, USA, 2017.
34 Prithvirajan R, Sugavaneswaran M, Sathishkumar N, et al. Rapid Prototyping Journal, 2019, 25(4), 765.
35 Post B, Roschli A, Chesser P, et al. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2019.
36 Combrinck J, Van Der Walt K, Booysen G, et al. South African Journal of Industrial Engineering, 2018, 29(3),10.
37 Nakamura N, Mori K I, Abe Y. The International Journal of Advanced Manufacturing Technology, 2020, 108(2),1.
38 Singh N, Singh R, Ahuja I P S. Materials Today Communications, 2018, 15,124.
39 Deden D, Buchheim A. In: The Compostits and Advanced Material Eexpo of 2018(CAMX 2018), Dalas, 2018.
40 Boparai K S, Singh R. Journal of Micro and Nano-Manufacturing, 2018, 6(2), 1.
41 Altaf K, Rani A, Majdi A, et al. In:Proceeding of the 3rd International Conference on Progress in Additive Manufacturing. Singapore, 2018, pp. 656.
42 Zhang Y, Pedersen D B, Gøtje A S, et al. Journal of Manufacturing Processes, 2017, 27,138.
43 Togwe T, Gökçe A, Chen Y, et al. International Journal of Refractory Metals and Hard Materials, 2020, 87, 105169.
44 Mendible G A, Rulander J A, Johnston S P. Rapid Prototyping Journal, 2017, 23(2), 344.
45 Kampker A, Triebs J, Kawollek S, et al. Rapid Prototyping Journal, 2019, 25(10), 1575.
46 Zou W, Huang J T, Zeng W, et al. ES Energy & Environment, 2020, 9(2), 67.
47 Bagalkot A, Pons D, Clucas D, et al. Rapid Prototyping Journal, 2019, 25(9), 1493.
48 Zink B, Kovács N K, Kovács J G. International Communications in Heat and Mass Transfer, 2019, 108, 104297.
49 Dalgarno K, Stewart T. Rapid Prototyping Journal, 2001, 7(3),173.
50 Wimpenny D I, Bryden B, Pashby I R. Journal of Materials Processing Technology, 2003, 138(138),214.
51 Sachs E, Wylonis E, Allen S. Polymer Engineering & Science, 2000, 40(5),1232.
52 Dalgarno K W, Stewart T D. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2001, 215(10),1323.
53 Kruth J P, Wang X, Laoui T. Assembly Automation, 2003(23),357.
54 Huang S H, Shi Y S, Wei Q S, et al. Aeronautical Manufacturing Technology, 2007(2),50 (in Chinese).
黄树槐,史玉升,魏青松,等.航空制造技术, 2007(2),50.
55 Park H S, Dang X P, Nguyen D S, et al. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 7(2), 319.
56 Pancholi J K, Padhiyar B, Sutariya V, et al. International Journal of Engineering Science, 2019, 9(3), 20168.
57 Huskic A, Behrens B, Giedenbacher J, et al. Schmiede Journal, 2013, 92013,66.
58 Oter Z C, Coskun M, Akca Y, et al. Optik, 2019, 176,175.
59 Ding D W, Du B M, Lin Y D. Die & Mould Industry, 2012(1),64(in Chinese).
丁大为, 杜秉明, 林怡德.模具工业, 2012(1),64.
60 Liu B,Tan J H, Wu C L. Engineering Plastics Application, 2015, 43(10),71 (in Chinese).
刘斌,谭景焕,吴成龙.工程塑料应用, 2015, 43(10),71.
61 Li Y, Bai B K. Metal World, 2007 (1),34 (in Chinese).
李艳, 白培康.金属世界, 2007 (1),34.
62 Du Y B, Zhang H. Machinery Design & Manufacture, 2010(10),142 (in Chinese).
杜宇波, 张会. 机械设计与制造, 2010 (10),142.
63 Zhang C M, Feng X N, Wang T. Mechanical Engineering & Automation, 2006(2),163(in Chinese).
张昌明,冯晓宁,王铁.机械工程与自动化, 2006(2),163.
64 Kuo C C, Jiang Z F, Yang X Y, et al. The International Journal of Advanced Manufacturing Technology, 2020, 107(3-4), 1223.
65 Kuo C C, Xu W C. The International Journal of Advanced Manufacturing Technology, 2018, 98(1-4), 887.
66 Jahan S, Wu T, Tovar A, et al. In:Mechanics of composite and multi-functional materials, Volume 5, Springer, Germany, 2020.
67 Kashouty M F E, Rennie A E W, Ghazy M. Materials (Basel), 2019, 12(23), 3910.
68 Tuteski O, Kočov A. Industry 40, 2018, 3(2), 82.
69 Wu T, Jahan S A, Zhang Y, et al. Procedia Manufacturing, 2017, (10),923.
70 Ahn D G. International Journal of Precision Engineering and Manufactu-ring, 2011, 12(5), 925.
71 Armillotta A, Baraggi R, Fasoli S. The International Journal of Advanced Manufacturing Technology, 2013, 71(1-4), 573.
72 Rahmati S. Comprehensive Materials Processing, 2014, 10, 303.
73 Zhang Y M, Chen Y, Li P. Journal of Materials Processing Technology, 2003, 135(2-3),347.
74 Zhong C L, Fu B J, Ding Y L, et al. Optics and Precision Engineering, 2015, 23(11),3005 (in Chinese).
仲崇亮,付金宝,丁亚林,等.光学精密工程, 2015, 23(11),3005.
75 Merz R, Prinz F,Ramaswami K. In:Proceedings of the 1994 International Solid Freeform Fabrication Symposium, Austin, 1994.
76 Fessler J, Merz R, Nickel A. In: Proceedings of the 1994 International Solid Freeform Fabrication Symposium, Austin, 1996.
77 Akula S, Karunakaran K P. Robotics and Computer-Integrated Manufacturing, 2006, 22(2), 113.
78 Song Y A, Park S, Choi D. International Journal of Machine Tools & Manufacture, 2005, 45(9),1057.
79 Legesse F, Kapil S, Vithasth H,et al. International Journal of Rapid Manufacturing, 2018, 7(1), 1.
80 Abdel-All E S, Frank M C, et al. Rapid Prototyping Journal, 2017, 23(1), 81.
81 Zhang S. Machine Building & Automation, 2015, 44(6), 1(in Chinese).
张曙. 机械制造与自动化, 2015, 44(6), 1.
82 Flynn J M, Shokrani A, Newman S T. International Journal of Machine Tools and Manufacture, 2016, 101,79.
83 Merklein M, Junker D, Schaub A. Physics Procedia, 2016, 83,549.
84 Yamazaki T. Procedia CIRP, 2016, 42,81.
85 Wang P H, KIM G, Sterkenburg R. International Journal of Aerospace and Mechanical Engineering, 2019, 13(11), 684.
86 Li Q Y, Li D C, Zhang A F. In:The 17th National Academic Conference on Non-Traditional Machining. Guangzhou, China, 2017(in Chinese).
李青宇, 李涤尘, 张安峰.第17届全国特种加工学术会议. 广州,2017.
87 Tan C, Zhou K, Ma W, et al. Materials & Design, 2018, 155,77.
88 Shakerin S, Hadadzadeh A, Amirkhiz B S, et al. Additive Manufactu-ring, 2019, 29,100797.
89 Zeng G H, Song T, Dai Y H, et al. Materials & Design, 2019, 169, 107693.
90 Cao J, Brinksmeier E, Fu M, et al. CIRP Annals, 2019, 68(2), 605.
91 Hirsch M, Catchpole-Smith S, Patel R, et al. Proceedings,Mathematical, Physical and Engineering Sciences, 2017, 473, 20170194.
92 Bamberg J, Spies M, Dillhoefer A, et al.In:11th ECNDT. Prague, 2014.
93 Léonard F, Tammas-Williams S, Todd I. In:6th Conference on Industrial Computed Tomography, 2016.
94 Wang L Q, Zhang B, Peng Y, et al. Acta Aeronautica ET Astronautica Sinica, 2020, 41(3),292(in Chinese).
王龙群, 张璧, 彭颖,等.航空学报, 2020, 41(3),292.
95 Liu S Z, Meng X Y, Zhang C, et al. Technical Acoustics, 2018, 37(1),43 (in Chinese).
刘素贞, 孟学艳, 张闯,等.声学技术, 2018, 37(1),43.
96 Baumgartl H, Tomas J, Buettner R, et al. Progress in Additive Manufacturing, 2020, 5(3),277.
97 Xu L, Du Y B, Zhang L,et al. Journal of Chongqing Technology and Business University(Natural Science Edition),2021,38(1),1.
许磊,杜彦斌,张磊.重庆工商大学学报(自然科学版),2021,38(1),1.
[1] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[2] 张静, 周婧, 段国林. 基于直写成型技术的多材料打印研究进展[J]. 材料导报, 2022, 36(8): 20080135-8.
[3] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[4] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[5] 汤荣华, 冯曰海, 刘思余, 陈琪. 双填丝等离子弧增材制造高强高硬高氮钢组织与特性研究[J]. 材料导报, 2022, 36(3): 20060143-5.
[6] 杜军, 蒋敏博, 张永恒, 徐思远, 魏正英. TIG电弧复合熔滴沉积增材制造45钢/铅合金双金属结构工艺研究[J]. 材料导报, 2022, 36(2): 20100016-5.
[7] 黎业华, 聂光临, 盛鹏飞, 邓欣, 包亦望, 伍尚华. Al2O3陶瓷增材制造工艺研究进展[J]. 材料导报, 2022, 36(14): 20110097-12.
[8] 石玗, 朱珍文, 张刚, 李璐鹏. 金属电弧增材成形控制关键技术及研究现状[J]. 材料导报, 2022, 36(12): 20090337-8.
[9] 夏晓光, 段国林. 功能梯度材料增材制造技术的研究进展及展望[J]. 材料导报, 2022, 36(10): 20030137-7.
[10] 李时春, 莫彬, 肖罡, 苏飞. 激光增材制造成形质量表征与调控研究进展[J]. 材料导报, 2022, 36(10): 20100127-9.
[11] 王勇, 陈旋, 左鹏鹏, 吴晓春. 铜和硫对P20型塑料模具钢切削性能的影响[J]. 材料导报, 2022, 36(10): 21030076-7.
[12] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[13] 侯雅青, 苏航, 张浩, 王畅畅. 金属材料多尺度高通量制备研究进展[J]. 材料导报, 2022, 36(1): 20080258-10.
[14] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[15] 杨广宇, 汤慧萍, 刘楠, 贾文鹏, 贾亮, 杨坤, 王建. 粉床型电子束增材制造W-Nb合金的缺陷及显微组织[J]. 材料导报, 2021, 35(z2): 448-451.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed