Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20100127-9    https://doi.org/10.11896/cldb.20100127
  金属与金属基复合材料 |
激光增材制造成形质量表征与调控研究进展
李时春1,*, 莫彬1, 肖罡1,2, 苏飞1
1 湖南科技大学难加工材料高效精密加工湖南省重点实验室,湖南 湘潭 411201
2 江西应用科技学院工程技术协同创新中心,南昌 330100
Research Progress of Forming Quality and Its Characterization and Regulation in Laser Additive Manufacturing
LI Shichun1,*, MO Bin1,, XIAO Gang1,2, SU Fei1
1 Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut Material, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
2 Collaborative Innovation Center of Engineering Technology, Jiangxi University of Applied Science, Nanchang 330100, China
下载:  全 文 ( PDF ) ( 3131KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光增材制造(LAM)制备多层结构成形件的工艺过程是由单熔覆道的逐道搭接和单熔覆层的逐层堆叠形成最后的成形件。在该工艺过程中,成形件容易产生缺陷,而单熔覆道及单熔覆层的成形优劣影响了最终的多层结构成形质量。明确缺陷在多层结构搭接及堆叠成形过程中的演变规律、优化单熔覆道及单熔覆层的成形质量是多层结构成形件最终成形质量的关键所在。本文综述了LAM成形过程中多层结构的缺陷形成过程、成形质量的表征以及成形质量的调控研究,为实现多层结构成形件的良好成形提供参考和指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李时春
莫彬
肖罡
苏飞
关键词:  激光增材制造  成形质量  缺陷遗传  质量表征  调控方法    
Abstract: The process of laser additive manufacturing (LAM) of multi-layer structure part consists of the one-by-one overlap of single cladding channel and the layer-by-layer piling-up of single cladding layer. In this process, the forming parts are prone to defects, and the forming quality of the final multilayer structure is determined by the forming quality of single cladding channel and layer. Therefore, the key to obtaining a good final forming quality of the multi-layer structure is to clarify the evolution law of defects in the overlapping and piling-up process of multi-layer structure, and optimize the forming quality of single cladding channel and layer. In this paper, the forming process of defects in multi-layer structure, the characterization of forming quality and the regulation of forming quality in the forming process of LAM are summarized, which provides reference and guidance for the good forming of multi-layer structure part.
Key words:  laser additive manufacturing    forming quality    defect inheritance    quality characterization    regulation methods
出版日期:  2022-05-25      发布日期:  2022-05-24
ZTFLH:  V261.8  
基金资助: 湖南省自然科学基金项目(2021JJ30255;2018JJ3183);湖南省教育厅科学研究重点项目(21A0301)
通讯作者:  li.shi.chun@163.com   
作者简介:  李时春,2014年于湖南大学获得博士学位,现为湖南科技大学副教授、博士研究生导师,主要从事激光焊接及激光增材制造技术的科研工作,发表论文30余篇,授权专利10余项。
引用本文:    
李时春, 莫彬, 肖罡, 苏飞. 激光增材制造成形质量表征与调控研究进展[J]. 材料导报, 2022, 36(10): 20100127-9.
LI Shichun, MO Bin, XIAO Gang, SU Fei. Research Progress of Forming Quality and Its Characterization and Regulation in Laser Additive Manufacturing. Materials Reports, 2022, 36(10): 20100127-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100127  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20100127
1 Chen G Q, Shu X, Zhang B G, et al. Transactions of the China Welding Institution, 2018, 39 (8),123 (in Chinese).
陈国庆, 树西, 张秉刚, 等. 焊接学报, 2018, 39 (8), 123.
2 Sun C S. Research on forming characteristics of thin-wall aluminium alloy parts by laser assisted MIG arc additive manufacturing. Master's Thesis, Dalian University of Technology, China, 2018 (in Chinese).
孙承帅. 铝合金激光诱导MIG电弧增材制造成型特征研究. 硕士学位论文, 大连理工大学, 2018.
3 Wang H M. Acta Aeronautica et Astronautica Sinica, 2014, 35 (10), 2690(in Chinese).
王华明.航空学报, 2014, 35(10),2690.
4 Yao Y S, Wang J, Chen Q B, et al. Laser and Optoelectronics Process,2019,56 (10),100004 (in Chinese).
姚燕生, 汪俊, 陈庆波, 等.激光与光电子学进展, 2019, 56 (10),100004.
5 Sun T T, Yao Y Q, Guo M H. Laser Journal, 2009, 30 (5), 68 (in Chinese).
孙婷婷, 杨永强, 郭明华.激光杂志, 2009, 30 (5), 68.
6 Yang J L, Ouyang H W, Xu C, et al. Rapid Prototyping Journal, 2012, 18 (1), 4.
7 Liu R C. The study on surface roughness of metal parts fabricated by selective laser melting and the application on non-assembly mechanisms. Master's Thesis, South China University of Technology, China, 2014 (in Chinese).
刘睿诚. 激光选区熔化成型零件表面粗糙度研究及在免组装机构中的应用. 硕士学位论文, 华南理工大学, 2014.
8 Wang F C. Optimization of forming process and characterization of CoCrFe-NiMn high entropy alloy fabricated by selective laser melting. Master's Thesis, Huazhong University of Science and Technology, China, 2019 (in Chinese).
王福超. 激光选区熔化CoCrFeNiMn高熵合金成形工艺优化及性能表征. 硕士学位论文, 华中科技大学, 2019.
9 Ansari M, Shoja R R, Barekat M. Optics and Laser Technology, 2016, 86, 136.
10 Yu T B, Lin Y, Zhao Y, et al. Optics and Laser Technology, 2018, 108, 321.
11 Zhong M L, Liu W J. Chinese Journal of Lasers, 2002, 29 (11), 1031 (in Chinese).
钟敏霖, 刘文今.中国激光, 2002, 29 (11), 1031.
12 Peng C W. Research on macro-quality of stainless steel parts by selective laser melting. Master's Thesis, Huazhong University of Science and Technology, China, 2009 (in Chinese).
彭昌吻. 基于选择性激光熔化技术的不锈钢零件宏观质量研究. 硕士学位论文, 华中科技大学, 2009.
13 Lalas C, Tsirbas K, Salonitis K, et al. International Journal of Advanced Manufacturing Technology, 2007, 32, 34.
14 Xu X C. Multi-objective optimization of laser cladding process parameters for remanufacturing. Master's Thesis, North University of China, China, 2019 (in Chinese).
许向川. 面向再制造的激光熔覆工艺参数多目标优化. 硕士学位论文, 中北大学, 2019.
15 Reddy L, Preston S P, Shipway P H, et al. Surface and Coatings Technology, 2018, 349, 198.
16 Sun Y W, Hao M Z. Optics and Lasers in Engineering, 2012, 50, 985.
17 Palumbo G, Pinto S, Tricarico L. Journal of Materials Processing Technology, 2004, 155-156, 1443.
18 Zhang Q, Chen J, Han C X, et al. Applied Laser, 2012, 32(4), 267 (in Chinese).
张强, 陈静, 韩昌旭, 等.应用激光, 2012, 32(4), 267.
19 Wang D, Yang Y Q, Su X B, et al. International Journal of Advanced Manufacturing Technology, 2012, 58, 1189.
20 Yadroitsev I, Bertrand P H, Smurov I. Applied Surface Science, 2007, 253, 8064.
21 Oliveira U D, Ocelik V, Hosson J T M D. Surface and Coatings Technology, 2005, 197, 127.
22 Ocelik V, Oliveira U D, Boer M D, et al. Surface and Coatings Technology, 2007, 201, 5875.
23 Lino C, Imre F, Tamas R, et al. Materials Science Forum, 2003, 414-415, 385.
24 Zhu G X, Zhang A F, Li D C.Chinese Journal of Lasers, 2010, 37 (1), 296 (in Chinese).
朱刚贤, 张安峰, 李涤尘.中国激光, 2010, 37 (1), 296.
20100127-825 Wu J F, Fu K, Xu X X, et al.Ordnance Material Science and Enginee-ring, 2014, 37 (3), 106 (in Chinese).
吴建峰, 符轲, 续晓霄, 等.兵器材料科学与工程, 2014, 37 (3), 106.
26 Qiu C L, Panwisawas C, Ward M, et al. Acta Matcrialia, 2015, 96, 72.
27 Ahsan M N, Pinkcrton A J, Moat R J, et al. Materials Science and Engineering: A, 2011, 528 (25/26), 7648.
28 Shi Q M, Gu D D, Xia M J, et al. Optics and Laser Technology, 2016, 84, 9.
29 Xu J G, Chen Y, Chen H, et al. Laser and Optoelectronics Progress, 2018, 55 (4), 041405 (in Chinese).
徐锦岗, 陈勇, 陈辉, 等.激光与光电子学进展, 2018, 55 (4), 041405.
30 Strano G, Hao L, Everson R M, et al. Journal of Materials Processing Technology, 2012, 7, 561.
31 Amend P, Pscherer C, Rechtenwald T, et al. Physics Procedia, 2010, 5, 561.
32 Song J S, Chen H, Guo Y L. Forestry Machinery and Woodworking Equipment, 2016, 44 (6), 26 (in Chinese).
宋金山, 陈晖, 郭艳玲.林业机械与木工设备, 2016, 44 (6), 26.
33 Chen J Y, Tang D W. Journal of Chongqing University of Technology (Natural Science), 2020, 34 (10), 111 (in Chinese).
陈金友, 唐德文. 重庆理工大学学报(自然科学), 2020, 34 (10), 111.
34 Yan C Z, Shi Y S, Yang J S, et al. Journal of Huazhong University of Science and Technology: Nature Science, 2008, 36 (5), 86 (in Chinese).
闫春泽, 史玉升, 杨劲松, 等.华中科技大学学报: 自然科学版, 2008, 36 (5), 86.
35 Gong P C. Research on the forming properties of PA12 and the process analysis of porous scaffold based on selective laser sintering. Master's Thesis, Chongqing University, China, 2018 (in Chinese).
龚鹏程. 基于选择性激光烧结的PA12成形性能及多孔支架制备工艺研究. 硕士学位论文, 重庆大学, 2018.
36 Wu H H, Li T F, Yan J N, et al. Carbon Techniques, 2017, 36 (2), 39 (in Chinese).
吴海华, 李腾飞, 鄢俊能, 等.炭素技术, 2017, 36 (2), 39.
37 Yang L X, Wang B, Xu C. China Plastics Industry, 2018, 46 (7), 61 (in Chinese).
杨来侠, 王勃, 徐超.塑料工业, 2018, 46 (7), 61.
38 Yan C Z, Shi Y S, Yang J S, et al. Polymer Materials Science and Engineering, 2009, 25 (5), 125 (in Chinese).
闫春泽, 史玉升, 杨劲松, 等.高分子材料科学与工程, 2009, 25 (5), 125.
39 Xin Z S. Research on the properties and key technology of rapid prototyping pieces with WPC. Ph.D. Thesis, Northeast Forestry University, China, 2011 (in Chinese).
辛宗生. 木塑材料快速成形件性能及其关键技术的研究. 博士学位论文, 东北林业大学, 2011.
40 Zhou W M. Study on parameters optimization of multi index molding process for PS/ABS composite powders based on selective laser sintering. Master's Thesis, Xi'an University of Science and Technology, China, 2018 (in Chinese).
周文明. 选择性激光烧结PS/ABS复合粉未多指标成型工艺参数优化研究. 硕士学位论文, 西安科技大学, 2018.
41 Wang W, Wang X L, Tong M, et al. Foundry Technology, 2010, 31 (4), 507 (in Chinese).
王维, 王兴良, 佟明, 等.铸造技术, 2010, 31 (4), 507.
42 Li J Q, Li D Q, Guo Z Y. Polymer Materials Science and Engineering, 2008 (6), 1 (in Chinese).
李吉泉, 李德群, 郭志英.高分子材料科学与工程, 2008 (6), 1.
43 He H X. Research on optimizing process parameters in selective laser melting. Master's Thesis, Hubei University of Technology, China, 2019 (in Chinese).
何红秀. 选择性激光熔覆工艺参数优化研究. 硕士学位论文, 湖北工业大学, 2019.
44 Dai X Q, Zhou S F, Wang M F, et al. Journal of Alloys and Compounds, 2017 (722), 173.
45 Yang J S. Study on the selective laser sintering materials for plastic functional parts and complex castings. Ph.D. Thesis, Huazhong University of Science and Technology, China, 2008 (in Chinese).
杨劲松. 塑料功能件与复杂铸件用选择性激光烧结材料的研究. 博士学位论文, 华中科技大学, 2008.
46 Zhang J. Study of warping deformation and stress for multilayer of PA6 powder in selective laser sintering. Master's Thesis, University of Science and Technology of China, China, 2016 (in Chinese).
张俊. 多层PA6粉末选区激光烧结的翘曲与应力变形研究. 硕士学位论文, 中国科学技术大学, 2016.
47 Zhang G, Wang C, Gao Y, et al. Rare Metal Materials and Engineering, 2015, 44 (5), 1229.
48 Li S C, Mo B, Xiao G, et al. Laser and Optoelectronics Progress, 2021, 58 (1), 0100007 (in Chinese).
李时春, 莫彬, 肖罡, 等.激光与光电子学进展, 2021, 58 (1), 0100007.
49 Chen Y, Lu F G, Zhang K, et al. Carbon, 2016, 107, 361.
50 Xu L, Shi Y S, Yan C Z, et al. Acta Materiae Compositae Sinica, 2008, 3 (25), 25 (in Chinese).
徐林, 史玉升, 闫春泽, 等.复合材料学报, 2008, 3 (25), 25.
51 Huang S F, Tsai H, Lin S T. Materials Transactions, 2002, 43 (10), 2604.
52 Yang W H, Tang X H, Qin Y X, et al. Chinese Journal of Lasers, 2007, 34 (4), 569 (in Chinese).
杨卫红, 唐霞辉, 秦应雄, 等.中国激光, 2007, 34 (4), 569.
53 Hayden D C. Advanced Materials and Processes, 2012, 170 (11), 46.
54 Idham M F, Abdullah B, Jaffar A, et al. Advanced Materials Research, 2011, 399-401, 172.
55 Li M Y, Zhang Q, Han B, et al. Optics and Laser Technology, 2020, 125, 105848.
56 Shen J Y, Lin C, Yao Y Q, et al. Surface Technology, 2019, 48 (12), 226 (in Chinese).
申井义, 林晨, 姚永强, 等.表面技术, 2019, 48 (12), 226.
57 Li M Y, Han B, Wang Y, et al. Transactions of Materials and Heat Treatment, 2015, 36 (10), 199 (in Chinese).
李美艳, 韩彬, 王勇, 等.材料热处理学报, 2015, 36 (10), 199.
58 Velde O, Gritzki R, Grundmann R. International Journal of Heat and Mass Transfer, 2001, 44 (14), 2751.
59 Shi Y, Chen K M, Liu J, et al. Chinese Journal of Lasers, 2018, 45 (11), 1102009 (in Chinese).
石岩, 陈奎明, 刘佳, 等.中国激光, 2018, 45 (11), 1102009.
60 Wang X J, Yan Y L. Laser and Optoelectronics Progress, 2020, 57 (23), 231401 (in Chinese).
王新军, 闫迎亮.激光与光电子学进展, 2020, 57 (23), 231401.
61 Yao Y Q, Lin C, Shen J Y, et al. Materials for Mechanical Engineering, 2020, 44 (5), 49 (in Chinese).
姚永强, 林晨, 申井义, 等.机械工程材料, 2020, 44 (5), 49.
62 Buchbinder D, Meiners W, Pirch N, et al. Journal of Laser Applications, 2014, 26 (1), 012004.
63 Kottman M, Zhang S J, Mcguffin Cawley J, et al. JOM, 2015, 67 (3), 622.
64 Alam M K, Edrisy A, Urbanic J, et al. Journal of Materials Engineering and Performance, 2017, 26 (3), 1076.
65 Li G J, Li J, Luo X. Materials Characterization, 2014, 98, 83.
66 Yu X C, Wang Z W, Liu H Q, et al. Heat Treatment of Metals, 2019, 44 (3), 114 (in Chinese).
于希辰, 王志文, 刘海青, 等.金属热处理, 2019, 44 (3), 114.
67 Chai R X, Li K K, Guo W, et al. Laser and Optoelectronics Progress, 2018, 55 (5), 279 (in Chinese).
柴蓉霞, 李凯凯, 郭卫, 等.激光与光电子学进展, 2018, 55 (5), 279.
68 Zhai W C, Yang B C, Liu Y H, et al. Hot Working Technology, 2017, 46 (20), 38 (in Chinese).
瞿伟成, 杨博程, 刘延辉, 等.热加工工艺, 2017, 46 (20), 38.
69 Cong D L, Zhou H, Ren Z N, et al. Materials and Design, 2014, 55, 597.
70 Yasa E, Kruth J P. Advances in Production Engineering and Management, 2011, 6 (4), 259.
71 Qi X B, Chen G F, Li Y, et al. Engineering, 2019, 5, 721.
72 Bi J, Lei Z L, Chen Y B, et al. Optics and Laser Technology, 2019, 118, 132.
73 Song J, Li Y, Deng Q, et al. In: 2006 the Annual Meeting of China Society of Mechanical Engineering and the First Annual Meeting of Mechanical and Transportation Engineering Department of Chinese Academy of Engineering. Hangzhou, China, 2006, pp. 1446.
74 Liu S, Kovacevic R. International Journal of Advanced Manufacturing Technology, 2014, 74, 867.
75 Fan P F, Zhang G. International Journal of Refractory Metals and Hard Materials, 2018, 87, 105133.
76 Mondal S, Paul C P, Kukreja L M, et al. International Journal of Advanced Manufacturing Technology, 2013, 66, 91.
77 Fang K T, Ma C X. Orthogonal and uniform experimental design, Science Press, China, 2001 (in Chinese).
方开泰, 马长兴.正交与均匀试验设计, 科学出版社, 2001.
78 Wu Z P, Li T, Li Q, et al. Optics and Laser Technology, 2019, 120, 105718.
79 Ma M Y, Xiong W J, Lian Y, et al. Surface and Coating Technology, 2020, 381, 125129.
80 Zhao K, Liang X D, Wang W, et al. Chinese Journal of Lasers, 2020, 47 (1), 0102004 (in Chinese).
赵凯, 梁旭东, 王炜, 等.中国激光, 2020, 47 (1), 0102004.
81 Xu Lei,Du Yanbin,Zhang Lei. Journal of Chongqing Technology and Business University(Natural Science Edition),2021,38(1),1(in Chinese).
许磊,杜彦斌,张磊.重庆工商大学学报(自然科学版),2021,38(1),1.
82 Li S C, Mo B, Xu W, et al. Optics and Laser Technology, 2020, 131, 106436.
83 Li S C, Mo B, Wang K M, et al. Optics and Laser Technology, 2022, 151, 107980.
[1] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[2] 侯雅青, 苏航, 张浩, 王畅畅. 金属材料多尺度高通量制备研究进展[J]. 材料导报, 2022, 36(1): 20080258-10.
[3] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[4] 李吉帅,戚文军,李亚江,黎小辉,王沛,刘建业. 选区激光熔化工艺参数对Ti-6Al-4V成形质量的影响*[J]. 材料导报编辑部, 2017, 31(10): 62-69.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed