Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 62-69    https://doi.org/10.11896/j.issn.1005-023X.2017.010.014
  材料研究 |
选区激光熔化工艺参数对Ti-6Al-4V成形质量的影响*
李吉帅1,2,戚文军1,李亚江2,黎小辉1,王沛1,3,刘建业4
1 广东省科学院广东省材料与加工研究所, 广州 510650;
2 山东大学材料科学与工程学院, 济南 250061;
3 西安理工大学材料科学与工程学院, 西安 710048;
4 广东汉邦激光科技有限公司, 中山 528400
Influence of Process Parameters of Forming Characteristics on Ti-6Al-4V Fabricated by Selective Laser Melting
LI Jishuai1,2, QI Wenjun1, LI Yajiang2, LI Xiaohui1, WANG Pei1,3, LIU Jianye4
1 Institute of Materials and Forming Technology of Guangdong Province, Guangdong Academy of Sciences, Guangzhou 510650;
2 College of Materials Science and Engineering, Shandong University, Jinan 250061;
3 College of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048;
4 Guangdong Hanbang Laser Technology Co. Ltd, Zhongshan 528400
下载:  全 文 ( PDF ) ( 1278KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选区激光熔化是一种利用高能束选择性熔化金属粉末进而直接制造复杂几何形状产品的增材制造技术。采用选区激光熔化成形 Ti-6Al-4V 样品,分析影响选区激光熔化成形质量的主要因素,采用体式显微镜、金相显微镜、扫描电子显微镜(SEM)、显微硬度计系统研究了不同工艺参数对Ti-6Al-4V合金选区激光熔化成形样品的表面形貌、致密度、组织、显微硬度的影响规律。研究得出Ti-6Al-4V合金选区激光熔化成形的优选工艺参数为:扫描功率450 W,扫描速度2 500 mm/s,扫描间距0.07 mm,该工艺参数下打印出的样品具有较为优良的成形质量,致密度高达97.8%,显微硬度平均值为446HV。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李吉帅
戚文军
李亚江
黎小辉
王沛
刘建业
关键词:  选区激光熔化  增材制造  钛合金  工艺参数  致密度  成形质量    
Abstract: Selective laser melting (SLM) is an additive manufacturing technique,through which functional, complex parts can be created directly by selectively melting metal powders. The influence of the processing parameters on the forming characteristics of metallic powder fabricated by SLM was discussed. The surface features, density, micro-hardness and microstructure were investigated by stereomicroscope, light optical microscopy, scanning electron microscope(SEM), microhardness tester in order to evaluate the forming quality of Ti-6Al-4V alloy fabricated by SLM with different scanning power (P), scanning speed (V), scanning width (S). The results indicated that Ti-6Al-4V fabricated by SLM with the parameters of P=450 W, V=2 500 mm/s, S=0.07 mm could obtain good surface quality, the density could reach 97.8%, the average micro-hardness was 446HV.
Key words:  selective laser melting    additive manufacturing    titanium alloys    process parameters    density    forming quality
发布日期:  2018-05-08
ZTFLH:  TH16  
基金资助: *广东省金属强韧化技术与应用重点实验室(2014B030301012);广州市先进金属结构材料重点实验室(201509010003);广东省重大科技专项(2014B010131005);广东省金属材料与加工专业镇联合创新公共平台(2013B091602002);广东省产学研项目(2014B090907008);广东省重大项目(2016B090914001)
通讯作者:  戚文军,男,1956年生,教授级高级工程师,硕士研究生导师,研究方向为轻金属材料成形与加工、增材制造与激光加工技术Tel:020-61086180E-mail:qiwenjun987@sohu.com   
作者简介:  李吉帅:男,1990年生,硕士研究生,主要从事焊接及金属3D打印的开发及应用E-mail:lijishuaisdu@163.com
引用本文:    
李吉帅,戚文军,李亚江,黎小辉,王沛,刘建业. 选区激光熔化工艺参数对Ti-6Al-4V成形质量的影响*[J]. 材料导报编辑部, 2017, 31(10): 62-69.
LI Jishuai,QI Wenjun, LI Yajiang, LI Xiaohui, WANG Pei,LIU Jianye. Influence of Process Parameters of Forming Characteristics on Ti-6Al-4V Fabricated by Selective Laser Melting. Materials Reports, 2017, 31(10): 62-69.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.014  或          https://www.mater-rep.com/CN/Y2017/V31/I10/62
1 Lawrence E Murr, Edwin Martinez, Krista N Amato, et al. Fabrication of metal and alloy components by additive manufacturing:Exa-mples of 3D materials science[J]. J Mater Res Technol,2012:42.
2 Hedayati R, Sadighi M, Mohammadi-Aghdam M, et al. Mechanical behavior of additively manufactured porous biomaterials made from truncated cuboctahedron unit cells[J]. Int J Mech Sci,2016,106:19.
3 Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Mater Sci Eng A,2014,598:327.
4 Zeng Guang, Han Zhiyu, Liang Shujin, et al. The applications and progress of manufacturing of metal parts by 3D printing technology[J]. Mater China,2014,33(6):376(in Chinese).
曾光,韩志宇,梁书锦,等. 金属零件3D打印技术的应用研究[J].中国材料进展,2014,33(6):376.
5 Lore Thijs, Frederik Verhaeghe, Tom Craeghs, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Mater,2010,58(9):3303.
6 Ming-Wei Wu, Pang-Hsin Lai. The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy[J]. Mater Sci Eng A,2016,658:429.
7 Morgan R H, Papworth A J, Sutcliffe C,et al. High density net shape components by direct laser re-melting of single-phase powders[J]. J Mater Sci,2002,37:3093.
8 Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Mater,2015,85:74.
9 Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V[J]. Mater Sci Eng A,2014,616:1.
10 Tolochko N, et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping J,2004,10:78.
11 Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping J,2007,13:196.
12 Li R, Liu J, Shi Y, et al.316 L stainless steel with gradient porosity fabricated by selective laser melting[J]. J Mater Eng Perform,2010,19:666.
13 Wu S Q, Lu Y J, Gan Y L,et al.Microstructural evolution and microhardness of a selective-lasermelted Ti-6Al-4V alloy after post heat treatments[J]. J Alloys Compd,2016,672:643.
14 Gao Shiyou, Zhang Yongzhong, Shi Likai, et al. Mechanical properties of TC4 alloy fabricated by laser direct deposition[J]. Chinese J Rare Metals,2004,28(1):29.
15 Li Huaixue, Huang Baiying, Sun Fan, et al. Microstructure and tensile properties of Ti-6Al-4V alloys fabricated by selective laser melting[J]. Rare Metal Mater Eng,2013,42(S2):209.
16 Haijun Gong, Khalid Rafi, Hengfeng Gu, et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J]. Mater Des,2015,86:545.
17 Zhen Xiaoyan, Yang Qingdong. Influence of processing parameters on forming characterizations of C276 alloy with 3D printing techno-logy[J]. Hot Working Technol,2015,44(15):87(in Chinese).
甄晓岩,杨庆东. 工艺参数对3D打印镍基合金成形质量的影响[J].热加工工艺,2015,44(15):87.
18 Yin Hua. The experiment research of selective laser melting of metal powder[D]. Taiyuan: North University of China,2010(in Chinese).
尹华. 金属粉末选区激光熔化成形工艺研究[D]. 太原:中北大学,2010.
19 Simonelli M, Tse Y Y, Tuck C. Microstructure of Ti-6Al-4V produced by selective laser melting[J]. J Physics: Conference Series,2012,371:012084.
20 Rafi K, Karthik N V, Gong H,et al. Microstructures and mechanical properties of Ti-6Al-4V parts made by selective laser melting and electron beam melting[J]. J Mater Eng Perform,2013,22:3872.
[1] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[2] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[3] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[4] 焦纪强, 蒙峻, 谢文君, 刘建龙, 魏宁斐, 罗成, 郭方准, 王润成. 超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究[J]. 材料导报, 2025, 39(1): 23090126-5.
[5] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[6] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[7] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[8] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[12] 邱贺方, 侯笑晗, 郭晓辉, 崔帆帆, 侯根良, 张泽, 罗伟蓬, 袁晓静. 电弧增材制造薄壁件形状控制研究进展[J]. 材料导报, 2024, 38(6): 22080200-14.
[13] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[14] 刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧, 张凤英. 增材制造316L不锈钢组织结构特征与硬化机理[J]. 材料导报, 2024, 38(3): 22060103-6.
[15] 郭耀旗, 唐敏, 马红林, 魏文猴, 王林志, 范树迁, 张祺. 预热温度对激光选区熔化成形30%SiCp/AlSi10Mg复合材料力学性能的影响[J]. 材料导报, 2024, 38(3): 22090016-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed