Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 62-69    https://doi.org/10.11896/j.issn.1005-023X.2017.010.014
  材料研究 |
选区激光熔化工艺参数对Ti-6Al-4V成形质量的影响*
李吉帅1,2,戚文军1,李亚江2,黎小辉1,王沛1,3,刘建业4
1 广东省科学院广东省材料与加工研究所, 广州 510650;
2 山东大学材料科学与工程学院, 济南 250061;
3 西安理工大学材料科学与工程学院, 西安 710048;
4 广东汉邦激光科技有限公司, 中山 528400
Influence of Process Parameters of Forming Characteristics on Ti-6Al-4V Fabricated by Selective Laser Melting
LI Jishuai1,2, QI Wenjun1, LI Yajiang2, LI Xiaohui1, WANG Pei1,3, LIU Jianye4
1 Institute of Materials and Forming Technology of Guangdong Province, Guangdong Academy of Sciences, Guangzhou 510650;
2 College of Materials Science and Engineering, Shandong University, Jinan 250061;
3 College of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048;
4 Guangdong Hanbang Laser Technology Co. Ltd, Zhongshan 528400
下载:  全 文 ( PDF ) ( 1278KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选区激光熔化是一种利用高能束选择性熔化金属粉末进而直接制造复杂几何形状产品的增材制造技术。采用选区激光熔化成形 Ti-6Al-4V 样品,分析影响选区激光熔化成形质量的主要因素,采用体式显微镜、金相显微镜、扫描电子显微镜(SEM)、显微硬度计系统研究了不同工艺参数对Ti-6Al-4V合金选区激光熔化成形样品的表面形貌、致密度、组织、显微硬度的影响规律。研究得出Ti-6Al-4V合金选区激光熔化成形的优选工艺参数为:扫描功率450 W,扫描速度2 500 mm/s,扫描间距0.07 mm,该工艺参数下打印出的样品具有较为优良的成形质量,致密度高达97.8%,显微硬度平均值为446HV。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李吉帅
戚文军
李亚江
黎小辉
王沛
刘建业
关键词:  选区激光熔化  增材制造  钛合金  工艺参数  致密度  成形质量    
Abstract: Selective laser melting (SLM) is an additive manufacturing technique,through which functional, complex parts can be created directly by selectively melting metal powders. The influence of the processing parameters on the forming characteristics of metallic powder fabricated by SLM was discussed. The surface features, density, micro-hardness and microstructure were investigated by stereomicroscope, light optical microscopy, scanning electron microscope(SEM), microhardness tester in order to evaluate the forming quality of Ti-6Al-4V alloy fabricated by SLM with different scanning power (P), scanning speed (V), scanning width (S). The results indicated that Ti-6Al-4V fabricated by SLM with the parameters of P=450 W, V=2 500 mm/s, S=0.07 mm could obtain good surface quality, the density could reach 97.8%, the average micro-hardness was 446HV.
Key words:  selective laser melting    additive manufacturing    titanium alloys    process parameters    density    forming quality
                    发布日期:  2018-05-08
ZTFLH:  TH16  
基金资助: *广东省金属强韧化技术与应用重点实验室(2014B030301012);广州市先进金属结构材料重点实验室(201509010003);广东省重大科技专项(2014B010131005);广东省金属材料与加工专业镇联合创新公共平台(2013B091602002);广东省产学研项目(2014B090907008);广东省重大项目(2016B090914001)
通讯作者:  戚文军,男,1956年生,教授级高级工程师,硕士研究生导师,研究方向为轻金属材料成形与加工、增材制造与激光加工技术Tel:020-61086180E-mail:qiwenjun987@sohu.com   
作者简介:  李吉帅:男,1990年生,硕士研究生,主要从事焊接及金属3D打印的开发及应用E-mail:lijishuaisdu@163.com
引用本文:    
李吉帅,戚文军,李亚江,黎小辉,王沛,刘建业. 选区激光熔化工艺参数对Ti-6Al-4V成形质量的影响*[J]. 材料导报编辑部, 2017, 31(10): 62-69.
LI Jishuai,QI Wenjun, LI Yajiang, LI Xiaohui, WANG Pei,LIU Jianye. Influence of Process Parameters of Forming Characteristics on Ti-6Al-4V Fabricated by Selective Laser Melting. Materials Reports, 2017, 31(10): 62-69.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.014  或          http://www.mater-rep.com/CN/Y2017/V31/I10/62
1 Lawrence E Murr, Edwin Martinez, Krista N Amato, et al. Fabrication of metal and alloy components by additive manufacturing:Exa-mples of 3D materials science[J]. J Mater Res Technol,2012:42.
2 Hedayati R, Sadighi M, Mohammadi-Aghdam M, et al. Mechanical behavior of additively manufactured porous biomaterials made from truncated cuboctahedron unit cells[J]. Int J Mech Sci,2016,106:19.
3 Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Mater Sci Eng A,2014,598:327.
4 Zeng Guang, Han Zhiyu, Liang Shujin, et al. The applications and progress of manufacturing of metal parts by 3D printing technology[J]. Mater China,2014,33(6):376(in Chinese).
曾光,韩志宇,梁书锦,等. 金属零件3D打印技术的应用研究[J].中国材料进展,2014,33(6):376.
5 Lore Thijs, Frederik Verhaeghe, Tom Craeghs, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Mater,2010,58(9):3303.
6 Ming-Wei Wu, Pang-Hsin Lai. The positive effect of hot isostatic pressing on improving the anisotropies of bending and impact properties in selective laser melted Ti-6Al-4V alloy[J]. Mater Sci Eng A,2016,658:429.
7 Morgan R H, Papworth A J, Sutcliffe C,et al. High density net shape components by direct laser re-melting of single-phase powders[J]. J Mater Sci,2002,37:3093.
8 Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Mater,2015,85:74.
9 Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V[J]. Mater Sci Eng A,2014,616:1.
10 Tolochko N, et al. Balling processes during selective laser treatment of powders[J]. Rapid Prototyping J,2004,10:78.
11 Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping J,2007,13:196.
12 Li R, Liu J, Shi Y, et al.316 L stainless steel with gradient porosity fabricated by selective laser melting[J]. J Mater Eng Perform,2010,19:666.
13 Wu S Q, Lu Y J, Gan Y L,et al.Microstructural evolution and microhardness of a selective-lasermelted Ti-6Al-4V alloy after post heat treatments[J]. J Alloys Compd,2016,672:643.
14 Gao Shiyou, Zhang Yongzhong, Shi Likai, et al. Mechanical properties of TC4 alloy fabricated by laser direct deposition[J]. Chinese J Rare Metals,2004,28(1):29.
15 Li Huaixue, Huang Baiying, Sun Fan, et al. Microstructure and tensile properties of Ti-6Al-4V alloys fabricated by selective laser melting[J]. Rare Metal Mater Eng,2013,42(S2):209.
16 Haijun Gong, Khalid Rafi, Hengfeng Gu, et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J]. Mater Des,2015,86:545.
17 Zhen Xiaoyan, Yang Qingdong. Influence of processing parameters on forming characterizations of C276 alloy with 3D printing techno-logy[J]. Hot Working Technol,2015,44(15):87(in Chinese).
甄晓岩,杨庆东. 工艺参数对3D打印镍基合金成形质量的影响[J].热加工工艺,2015,44(15):87.
18 Yin Hua. The experiment research of selective laser melting of metal powder[D]. Taiyuan: North University of China,2010(in Chinese).
尹华. 金属粉末选区激光熔化成形工艺研究[D]. 太原:中北大学,2010.
19 Simonelli M, Tse Y Y, Tuck C. Microstructure of Ti-6Al-4V produced by selective laser melting[J]. J Physics: Conference Series,2012,371:012084.
20 Rafi K, Karthik N V, Gong H,et al. Microstructures and mechanical properties of Ti-6Al-4V parts made by selective laser melting and electron beam melting[J]. J Mater Eng Perform,2013,22:3872.
[1] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 申琦, 余森, 牛金龙, 汶斌斌, 刘辉, 于振涛. 选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(z1): 278-282.
[4] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[5] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[6] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[7] 刘强, 惠松骁, 宋生印, 叶文君, 于洋. 油气开发用钛合金油井管选材及工况适用性研究进展[J]. 材料导报, 2019, 33(5): 841-853.
[8] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[9] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[10] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[11] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[12] 段伟, 赵哲, 吉红伟, 卢洋, 陈嘉星, 倪培燊, 邓欣, 刘建业, 戚文军, 牛留辉, 高文华. 粉体性能及选区激光熔化打印工艺对AlSi10Mg合金致密化行为的影响[J]. 材料导报, 2019, 33(10): 1685-1690.
[13] 余淑荣, 程能弟, 黄健康, 李楠, 樊丁. 旁路耦合微束等离子弧焊增材制造的热过程[J]. 材料导报, 2019, 33(1): 162-166.
[14] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[15] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed