Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 70-76    https://doi.org/10.11896/j.issn.1005-023X.2017.010.015
  材料研究 |
GH3625合金管材冷变形行为及热处理工艺研究*
丁雨田,高钰璧,豆正义,高鑫,贾智
兰州理工大学,省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
Study on Cold Deformation Behavior and Heat Treatment Process of GH3625 Superalloy Tubes
DING Yutian, GAO Yubi, DOU Zhengyi, GAO Xin, JIA Zhi
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 1355KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过室温压缩试验、数学模型拟合、光学显微镜和洛氏硬度计等手段,并建立GH3625合金管材冷变形本构方程,研究了冷变形及热处理对GH3625合金管材组织和性能的影响。研究表明,GH3625合金管材加工硬化规律基本符合Hollomon方程,其中冷变形量是影响加工硬化的主要因素;随着冷变形量的增大,晶粒的变形程度增大,晶粒的变形均匀性逐渐改善,平均晶粒尺寸减小;合金的平均晶粒尺寸随热处理温度的升高呈现出先减小后增大的趋势,在1 100~1 250 ℃范围内晶粒长大激活能为180.46 kJ/mol;硬度随热处理温度的升高而降低,且在晶粒长大过程中合金的硬度值与平均晶粒尺寸满足Hall-Patch关系式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁雨田
高钰璧
豆正义
高鑫
贾智
关键词:  GH3625合金管材  冷变形行为  加工硬化  热处理工艺  平均晶粒尺寸    
Abstract: The influence of cold deformation and heat treatment on microstructure and properties of the GH3625 alloy was studied through room-temperature compression test, mathematical model fitting, optical microscopy and Rockwell hardness and other means. Cold deformation constitutive equation of GH3625 alloy tubes was established. The results show that GH3625 alloy harde-ning law basically follows Hollomon equation, and the cold deformation was the main factor which affect the work hardening. With the increase of cold deformation extend, grain deformation degree raised, deformation uniformity of the grains gradually improved and average grain size decreased. With the increase of heat treatment temperature, the average grain size of the alloy first decreased and then climbed up. When the temperature was at the range of 1 100-1 250 ℃, grain growth activation energy reached 180.46 kJ/mol. Hardness declined with the increase of heat treatment temperature, the hardness values and the average grain size of the alloy kept in line with Hall-Patch relation.
Key words:  GH3625 superalloy tubes    cold deformation behavior    work hardening    heat treatment process    average grain size
发布日期:  2018-05-08
ZTFLH:  TG146.1+5  
基金资助: *国家自然科学基金(51661019);甘肃省重大科技专项(145RTSA004)
作者简介:  丁雨田:男,1962年生,博士,教授,博士研究生导师,研究方向为镍基高温合金E-mail:Dingyutian@126.com高钰璧:男,1991年生,硕士研究生,研究方向为GH3625合金冷变形行为E-mail:gaoyubi1991@126.com
引用本文:    
丁雨田,高钰璧,豆正义,高鑫,贾智. GH3625合金管材冷变形行为及热处理工艺研究*[J]. 材料导报编辑部, 2017, 31(10): 70-76.
DING Yutian, GAO Yubi, DOU Zhengyi, GAO Xin, JIA Zhi. Study on Cold Deformation Behavior and Heat Treatment Process of GH3625 Superalloy Tubes. Materials Reports, 2017, 31(10): 70-76.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.015  或          https://www.mater-rep.com/CN/Y2017/V31/I10/70
1 Zhang Hongbin.Inconel GH3625 alloy progress abroad [J]. Special Steel Technol,2000(3):69(in Chinese).
张红斌. 国外Inconel GH3625合金的进展[J].特钢技术,2000(3):69.
2 郭建亭.高温合金材料学[M].北京:科学出版社,2008.
3 中国航空材料手册编委会.航空材料手册[M].北京:中国标准出版社,2002.
4 Mittra J,Dubey J S,Banerjee S. Acoustic emission technique used for detecting early stages of precipitation during aging of Inconel GH3625[J]. Scr Mater,2003,49:1209.
5 冶军.美国镍基高温合金[M].北京:科学出版社,1978:228.
6 Tian Dang. Development and production of high-temperature alloy seamless tubulars[J]. Steel Pipe,2002,31(3):1(in Chinese).
田党. 高温合金无缝管材的研制与生产[J].钢管,2002,31(3):1.
7 He Songjiong. Study on processing of difficult-to-deform high temperature alloy of nickel base[J].Shanghai Steel Institute,1996(3):28(in Chinese).
何松炯.一种难变形镍基高温合金加工工艺的研究[J].上海钢研,1996(3):28.
8 Zhao Honglei, Liu Ming, Zhang Luqiang, et al. Study on forming process of GH3600 alloy tube for aerospace[J].Hot Work Technol,2014,43(11):140(in Chinese).
赵鸿磊,刘鸣, 张录强,等.航天用GH3600合金管成形工艺研究[J].热加工工艺,2014,43(11):140.
9 Guo Shengli,Li Defu,Guo Qingmiao,et al. Investigation on hot workability characteristics of Inconel GH3625 superalloy using processing maps[J]. J Mater Sci,2012,47:5867.
10 Li Defu, Wu Zhigang, Guo Shengli, et al.Study on the processing map of GHGH3625 Ni-based alloy deformed at high temperature[J]. Rare Met Mater Eng,2012(41):1026(in Chinese).
李德富, 吾志刚, 郭胜利, 等. GHGH3625镍基合金高温塑性变形加工图研究[J].稀有金属材料与工程,2012(41):1026.
11 Guo Qingmiao, Li Haitao, Li Defu, et al. Hot extrusion moulding process and microstructure evolution of GHGH3625 superalloy tubes[J]. Chin J Rare Met,2011,35(5):685(in Chinese).
郭青苗, 李海涛, 李德富, 等.GHGH3625合金管材热挤压成形工艺及组织演变的研究[J].稀有金属,2011,35(5):685.
12 Yan Shicai, Cheng Ming, Zhang Shihong, et al. High-temperature high-speed hot deformation behavior of Inconel alloy GH3625 [J].Chin J Mater Res,2010,24(3):239(in Chinese).
闫士彩, 程明, 张士宏, 等. Inconel GH3625合金的高温高速热变形行为[J]. 材料研究学报,2010,24(3):239.
13 卡恩R W, 哈森P, 克雷默E J. 材料科学与技术(第6卷)[M].北京: 科学出版社,1999:17.
14 Huang Kewen, Kong Fanya. Microstructure and mechanical property of cold drawn high strength 00Cr18Ni10N stainless steel wire[J].Acta Metall Sin,2009,45(3):275(in Chinese).
黄克文, 孔凡亚. 冷拔高强00Cr18Ni10N不锈钢丝显微组织与力学性能[J].金属学报,2009,45(3):275.
15 Huang C X, Yang G, Gao Y L, et al. Influence of processing temperature on the microstructures and tensile properties of 304L stainless steel by ECAP[J]. Mater Sci Eng A,2008,485:643.
16 俞汉清, 陈金德. 材料成形原理[M].北京: 机械工业出版社,1996,10.
17 Bian Fang, Su Guoyue, Kong Yafan, et al. Work hardening beha-vior of Inconel 718 [J]. Nonferrous Met,2005,57(1):1(in Chinese).
边舫,苏国跃,孔亚凡,等. Inconel 718合金加工硬化行为[J].有色金属,2005,57(1):1.
18 张俊善. 材料强度学[M]. 哈尔滨: 哈尔滨工业大学出版社,2004,55.
19 Hollomon J H. The effect of heat treatment and carbon content on the work hardening characteristics of several steels[J]. Trans ASM,1944,32:123.
20 Tian X, Zhang Y S. Mathematical description for flow curves of some stable austenitic steels[J].Mater Sci Eng,1994,174A:1.
21 Gao Yongsheng, Zhou Jihua, Lun Yixin, et al. Study on the mathe-matial model of flow stress of nonferrous under cold forming[J].J University of Scinence and Technology Beijing,1994,16(S):102(in Chinese).
高永生, 周纪华, 伦怡馨, 等.有色金属冷变形流动应力的数学模型[J].北京科技大学学报,1994,16(S):102.
22 Wang Zhigang, Yang Yujun, Tian Shuixian, et al. Influence of cold drawing process on microstructures and tensile properties of alloy GH3GH3625[J].J Iron Steel Res,2011(S2):92(in Chinese).
王志刚, 杨玉军, 田水仙, 等.冷拔变形对GH3GH3625合金组织和性能的影响[J].钢铁研究学报,2011(S2):92.
23 Zhao Yuxin. Cold deformation behavior of GHGH3625 alloy and their effects on the mechanical properties [J]. J Mater Eng,2000(9):36(in Chinese).
赵宇新. GHGH3625合金的冷变形及其力学性能的影响[J].材料工程,2000(9):36.
24 Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Sci,1979,13:187.
25 Anelli E. Application of mathematical modelling to hot rolling and controlled cooling of wire rods and bars[J].ISIJ Int,1992,32:440.
[1] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[2] 董金美, 文静, 郑卫新, 贾利蕊, 常成功, 肖学英. 盐湖镁渣的热处理工艺及其对磷酸镁水泥性能的影响[J]. 材料导报, 2023, 37(23): 22040072-7.
[3] 谢奕心, 程晓农, 鞠玉琳, 魏琪. H13及H13改进型热作模具钢热处理过程中碳化物析出演化行为研究进展[J]. 材料导报, 2023, 37(23): 22040214-8.
[4] 张明山, 田亚强, 郑小平, 张源, 王俊升, 陈连生. 基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究[J]. 材料导报, 2023, 37(22): 22050146-6.
[5] 房洪杰, 刘慧, 孙杰, 张倩, 余琨. 5xxx系铝合金研究现状及发展趋势[J]. 材料导报, 2023, 37(21): 22010082-10.
[6] 翟海民, 欧梦静, 袁花妍, 崔帅, 李文生. 内生块体非晶复合材料的加工硬化行为研究进展[J]. 材料导报, 2022, 36(23): 20100214-9.
[7] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[8] 袁江杭, 曲兆明, 赵芳, 许宝才, 孙肖宁, 王庆国. 片形羰基铁粉热处理工艺及其吸波性能研究[J]. 材料导报, 2022, 36(18): 21040268-6.
[9] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[10] 董振东, 童志, 周洪宇, 王慧敏, 郑文跃, 孙晓冉, 丁辉. 抽油杆钢材的发展和抽油杆的服役失效[J]. 材料导报, 2021, 35(19): 19161-19169.
[11] 杨立军, 郑航, 李俊, 隋泽卉. 热处理对激光选区熔化成型316L合金综合性能的影响[J]. 材料导报, 2021, 35(12): 12103-12109.
[12] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[13] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[14] 张建龙, 薛河, 崔英浩, 陈浩. 加工硬化对304不锈钢应力腐蚀裂纹裂尖力学性能的影响[J]. 材料导报, 2019, 33(24): 4147-4151.
[15] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed