Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22060243-6    https://doi.org/10.11896/cldb.22060243
  金属与金属基复合材料 |
金属材料激光增材制造路径规划研究现状与展望
柴媛欣1, 邢飞1,2,*, 李殿起1,*, 史建军2, 苗立国1, 卞宏友1, 闫成鑫1
1 沈阳工业大学机械工程学院,沈阳 110870
2 南京中科煜宸激光技术有限公司,南京 210038
Status and Prospect of Research on Laser Additive Manufacturing Path Planning for Metallic Materials
CHAI Yuanxin1, XING Fei1,2,*, LI Dianqi1,*, SHI Jianjun2, MIAO Liguo1, BIAN Hongyou1, YAN Chengxin1
1 School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Nanjing Zhongke Raycham Laser Technology Co., Ltd., Nanjing 210038, China
下载:  全 文 ( PDF ) ( 21047KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光增材制造技术可成形任意复杂形状零件,广泛应用于航空航天、汽车、船舶、医疗器具等领域。激光增材制造技术根据粉末提供方式的差异可分为粉末床预置铺粉的选区激光熔化技术和送粉器同步送粉的激光定向能量沉积技术。路径规划是激光增材制造过程中的重要步骤,当采用不同的路径策略时,即使硬件设备和工艺参数保持一致,零件的成形质量以及力学性能也会存在较大差异。目前,众多学者针对不同目标的路径规划策略展开了广泛的研究。本文总结了激光增材制造技术路径规划的研究现状,分析了两类目标的路径规划策略,即提高成形质量以及力学性能。最后对未来激光增材制造路径规划的研究进行了展望,为其进一步研究提供了方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴媛欣
邢飞
李殿起
史建军
苗立国
卞宏友
闫成鑫
关键词:  激光增材制造  路径规划  成形质量  力学性能    
Abstract: Laser additive manufacturing technology can shape arbitrarily complex parts and is widely used in aerospace, automotive, marine, medical apparatus, and other fields. Depending on the powder delivery method, laser additive manufacturing technology can be divided into selective laser melting technology with pre-positioned powder lay down in the powder bed and laser directed energy deposition technology with simultaneous powder delivery in the powder feeder. Path planning is an essential step in the laser additive manufacturing process. When different path strategies are used, the part forming quality and the mechanical properties can vary greatly, even if the hardware equipment and process parameters remain consistent. Many scholars have conducted extensive research on path planning strategies for different targets. This paper summarizes the current research status of laser additive manufacturing path planning. It compares and analyzes the path planning strategies for two goals:improving the forming quality and mechanical properties. Finally, future research on laser additive manufacturing path planning is prospected to provide a direction for further research.
Key words:  laser additive manufacturing    path planning    forming quality    mechanical property
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TG14  
  TH162  
基金资助: 国家科技重大专项(2019-Ⅶ-0004-0144);辽宁“百千万人才工程”资助项目(LNBQW 2020B0050)
通讯作者:  *邢飞,沈阳工业大学机械工程学院教授、博士研究生导师。2003年东北大学机械电子工程专业本科毕业,2005年中国科学院沈阳自动化研究所机械电子工程专业硕士毕业,2009年中国科学院沈阳自动化研究所机械电子工程专业博士毕业。目前主要从事智能制造、高端装备制造等方面的研究工作。中组部第二批“万人计划”入选者、科技部“领军型创新创业人才计划”入选者、江苏省双创团队领军人才、辽宁省攀登学者、中国激光加工学会学术委员会委员、中国增材制造产业联盟副理事长、十三五增材制造与激光制造重点研发计划评审组组长。获省部级一等奖1项、二等奖1项。先后主持和参与国家级、省部级科技计划项目30余项,申请专利100余项,发表学术论文40余篇,出版专著2部。
李殿起,沈阳工业大学机械工程学院教授、博士研究生导师。1990年吉林工业大学农业机械设计专业本科毕业,2002年东北大学固体力学专业硕士毕业后到沈阳工业大学工作至今,2007年东北大学模式识别与智能系统专业博士毕业。目前主要从事智能制造、机器视觉等方面的研究工作。先后主持和参与国家级、省市级项目20余项,发表学术论文40余篇。xingfei@raycham.com;dianqi@126.com   
作者简介:  柴媛欣,2017年6月、2020年6月分别于辽宁工业大学获得工学学士学位和硕士学位。现为沈阳工业大学机械工程学院博士研究生,在李殿起教授与邢飞教授的指导下进行研究。目前主要研究领域为激光关键技术开发与应用。
引用本文:    
柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
CHAI Yuanxin, XING Fei, LI Dianqi, SHI Jianjun, MIAO Liguo, BIAN Hongyou, YAN Chengxin. Status and Prospect of Research on Laser Additive Manufacturing Path Planning for Metallic Materials. Materials Reports, 2024, 38(4): 22060243-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060243  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22060243
1 Adeyemi A, Akinlabi E T, Mahamood R M. Materials Today:Procee-dings, 2018, 5(9), 18510.
2 Ling W, Wang X, Wang L, et al. Optics & Laser Technology, 2023, 157, 108648.
3 Lu H, Zhang X, Liu J, et al. Journal of Alloys and Compounds, 2022, 925, 166720.
4 Pang X, Xiong Z, Liu S, et al. Materials Science and Engineering:A, 2022, 857, 144104.
5 Wang Q Z, Lin X, Kang N, et al. Materials Science and Engineering:A, 2022, 840, 142950.
6 Xiao H, Chen C, Zhang M. Materials Research Express, 2019, 6(11), 116574.
7 Mahamood R M, Akinlabi E T. The International Journal of Advanced Manufacturing Technology, 2018, 99(5), 1545.
8 Paul S, Singh R, Yan W, et al. Scientific Reports, 2018, 8(1), 1.
9 Tan C, Zhou K, Ma W, et al. Acta Metall Sin, 2019, 56(1), 36.
10 Shiva S, Yadaiah N, Palani I A, et al. Journal of Manufacturing Processes, 2019, 48, 98.
11 Tang M, Lin X, Huang W. Materials Technology, 2016, 31(2), 90.
12 Zhang H, Zhao Y, Cai J, et al. Materials & Design, 2021, 201, 109462.
13 Doñate-Buendia C, Kürnsteiner P, Stern F, et al. Acta Materialia, 2021, 206, 116566.
14 Zhou L, Sun J, Chen J, et al. Journal of Alloys and Compounds, 2022, 928, 167130.
15 Peng J, Li J, Liu B, et al. Journal of Materials Science & Technology, 2023, 133, 12.
16 Seede R, Shoukr D, Zhang B, et al. Acta Materialia, 2020, 186, 199.
17 Su Y, Wang Y, Shi J. Materials Science and Engineering:A, 2022, 857, 144075.
18 Hespeler S, Dehghan-Niri E, Juhasz M, et al. Applied Sciences, 2022, 12(18), 8974.
19 Kim H, Lee K K, Ahn D G, et al. Materials, 2021, 14(7), 1794.
20 Cheng Y, Cao C, Yang X, et al. Materials Chemistry and Physics, 2022, 290, 126617.
21 Al-Musaibeli H, Ahmad R. The International Journal of Advanced Manufacturing Technology, 2022, 122(3), 1259.
22 Zhang X, Cui W, Li W, et al. The International Journal of Advanced Manufacturing Technology, 2019, 100(5), 1607.
23 Ren K, Chew Y, Fuh J Y H, et al. Materials & Design, 2019, 162, 80.
24 Haibo H, Wenlei S, Guan Z, et al. China Surface Engineering, 2018, 31(5), 175.
25 Xiang Z, Yan R, Wu X, et al. Optik, 2020, 206, 164316.
26 Wang X, Sun W, Chen Y, et al. The International Journal of Advanced Manufacturing Technology, 2018, 96(5), 2397.
27 Tao P, Li H, Huang B, et al. China Foundry, 2018, 15(4), 243.
28 Liu W, Saleheen K M, Tang Z, et al. Optical Engineering, 2021, 60(7), 070901.
29 Tang Q, Yin S, Zhang Y, et al. The International Journal of Advanced Manufacturing Technology, 2018, 98(5), 1671.
30 Tang X, Luo K, Lu J. Materials Research Express, 2021, 8(2), 026523.
31 Zhao J, Liu W, Xia R, et al. In:2007 International Conference on Mechatronics and Automation. Harbin, 2007, pp. 587.
32 Zhang W, Shi Y, Liu B, et al. The International Journal of Advanced Manufacturing Technology, 2009, 41(7), 706.
33 Bian H Y, Fan Q C, Li Y, et al. Journal of Mechanical Engineering, 2015, 51(24), 57 (in Chinese).
卞宏友, 范钦春, 李英, 等. 机械工程学报, 2015, 51(24), 57.
34 Yeung H, Lane B, Fox J, et al. In:2017 International Solid Freeform Fabrication Symposium. Austin, 2017, pp. 1423.
35 Zhang H, Gu D, Dai D. Virtual and Physical Prototyping, 2022, 17(2), 308.
36 Buser M, Onuseit V, Graf T. Optics and Lasers in Engineering, 2021, 138, 106412.
37 Jia H, Sun H, Wang H, et al. The International Journal of Advanced Manufacturing Technology, 2021, 113(9), 2413.
38 Chen C, Yin J, Zhu H, et al. International Journal of Machine Tools and Manufacture, 2019, 145, 103433.
39 Foroozmehr E, Kovacevic R. The International Journal of Advanced Manufacturing Technology, 2010, 51(5), 659.
40 Bian H Y, Yang G, Li Y, et al. Journal of Mechanical Engineering, 2013, 49(11), 171 (in Chinese).
卞宏友, 杨光, 李英, 等. 机械工程学报, 2013, 49(11), 171.
41 Kudzal A, McWilliams B, Hofmeister C, et al. Materials & Design, 2017, 133, 205.
42 Rashid R, Masood S H, Ruan D, et al. Journal of Materials Processing Technology, 2017, 249, 502.
43 Javidrad H R, Ghanbari M, Javidrad F. Journal of Materials Research and Technology, 2021, 12, 989.
44 Biegler M, Wang J, Kaiser L, et al. Steel Research International, 2020, 91(11), 2000017.
45 Bian H Y, Yang G, Wang G, et al. In:Applied Mechanics and Mate-rials. Wuhan, 2012, pp. 79.
46 Mohanty S, Tutum C C, Hattel J H. In:Laser-based Micro-and Na-nopackaging and Assembly VII. San Francisco, 2013, pp. 115.
47 Lu Y, Wu S, Gan Y, et al. Optics & Laser Technology, 2015, 75, 197.
48 Tolosa I, Garciandía F, Zubiri F, et al. The International Journal of Advanced Manufacturing Technology, 2010, 51(5), 639.
49 Cheng B, Shrestha S, Chou K. Additive Manufacturing, 2016, 12, 240.
50 Zhang K, Shang X F. In:Applied Mechanics and Materials. Shanghai, 2011, pp. 2640.
51 Ren Z, Tian Y L, Zhou M Y, et al. In:Advanced Materials Research. Guillin, 2012, pp. 1538.
52 Wang W, He Y, Qin L Y, et al. Applied Laser, 2016, 36(4), 373 (in Chinese).
王伟, 何妍, 钦兰云, 等. 应用激光, 2016, 36(4), 373.
53 Li J, Deng D, Hou X, et al. Materials Science and Technology, 2016, 32(12), 1223.
54 Zhang L, Ding L, Ullah S, et al. Rapid Prototyping Journal, 2020, 26(10), 1751.
55 Wang D, Wu S, Yang Y, et al. Materials, 2018, 11(10), 1821.
56 Sun Q, Guo K, Wang X, et al. Materials Science and Engineering:A, 2020, 793, 139879.
57 Deng Y Y, Li W S. Journal of Graphics, 2022, 43(1), 149 (in Chinese).
邓洋洋, 李维诗. 图学学报, 2022, 43(1), 149.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed