Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20080135-8    https://doi.org/10.11896/cldb.20080135
  高分子与聚合物基复合材料 |
基于直写成型技术的多材料打印研究进展
张静1, 周婧2, 段国林1
1 河北工业大学机械工程学院,天津 300401
2 天津科技大学机械工程学院,天津 300222
Multi-material Printing of Direct Ink Writing: a State of the Art Review
ZHANG Jing1, ZHOU Jing2, DUAN Guolin1
1 School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
2 College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
下载:  全 文 ( PDF ) ( 8962KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 直写成型作为增材制造技术中应用较为广泛的一种工艺和方法,具有设备成本低、材料利用率高、操作过程简单、能量要求低、环境友好等优点。近年来,直写成型技术已成为增材制造技术的研究热点之一。本文概述了直写成型技术的机理和优点,分别从混合材料打印、材料混合打印以及功能梯度材料打印三个方面,着重阐述了直写成型技术在生物医学、建筑工程、含能材料以及食品工程等不同领域中的研究现状,总结了不同材料打印方式的技术难点和关键问题,最后,对直写成型技术面临的挑战和未来发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张静
周婧
段国林
关键词:  增材制造  直写成型  混合材料打印  材料混合打印  功能梯度材料打印    
Abstract: As a widely used process and method in additive manufacturing technology, direct ink writing has the advantages of low equipment cost, high material utilization rate, simple operation process, low energy requirement and environmental friendliness. In recent years, direct ink writing technology has become one of the research hotspots of additive manufacturing technology. This paper introduces the mechanism and advantages of direct ink writing technology, from the three aspects of mixed material printing, material mixed printing and functionally graded material printing, elaborates the application of direct ink writing technology in biomedicine, construction engineering, energetic materials and food engineering, etc., and summarizes the technical difficulties and key issues of printing methods of different materials.It also discusses the challenges and the future development trend of direct ink writing technology.
Key words:  additive manufacture    direct ink writing    mixed material printing    material mixed printing    functionally graded material printing
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  TB34  
基金资助: 河北省重点研究开发资助项目(17211808D);天津市自然科学基金资助项目(18JCQNJC75100)
通讯作者:  glduan@hebut.edu.cn   
作者简介:  张静,2015年6月毕业于河北农业大学,获得工学学士学位。现为河北工业大学机械工程学院博士研究生,在段国林教授的指导下进行研究。目前主要研究领域为增材制造。
段国林,河北工业大学机械工程学院教授/博士研究生导师。1984年7月本科毕业于河北工学院机械系,1997年9月在天津大学机械学院取得博士学位,1998年7月至2000年9月任河北工业大学科研处副处长、CAD/CAM研究所所长。2000年9月至2011年12月任河北工业大学科研处处长;2011年12月至2012年11月任河北工业大学科学技术研究院常务副院长。2012年11月至今,任河北工业大学副校长。主要从事CAD/CAM和增材制造的研究工作。近年来,在CAD/CAM和增材制造领域发表论文150余篇。
引用本文:    
张静, 周婧, 段国林. 基于直写成型技术的多材料打印研究进展[J]. 材料导报, 2022, 36(8): 20080135-8.
ZHANG Jing, ZHOU Jing, DUAN Guolin. Multi-material Printing of Direct Ink Writing: a State of the Art Review. Materials Reports, 2022, 36(8): 20080135-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080135  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20080135
1 Li Q, Li B, Zhou J, et al. Journal of Inorganic Materials,2005(1),13(in Chinese).
李琦,李勃,周济,等.无机材料学报,2005(1),13.
2 Sun Y H, Peng C Q, Wang X F, et al. Chinese Journal of Nonferrous Metals,2015,25(6),1525(in Chinese).
孙月花,彭超群,王小锋,等.中国有色金属学报,2015,25(6),1525.
3 Wang S Y, Li S J, Tu Y Y, et al. Chinese Journal of New Drugs,2020,29(8),881(in Chinese).
王森怡,李思佳,涂迎盈,等.中国新药杂志,2020,29(8),881.
4 Ghidini T. Journal of Thoracic Disease,2018,10(20),S2363.
5 Nadagouda M N, Rastogi V, Ginn M. Current Opinion in Chemical Engineering,2020,28,152.
6 Zhang X, Zhang Y. Cell Biochem Biophys,2015,72(3),777.
7 Cesarano J, Segalman R, Calvert P. Ceramics Industry,1998,148(4),94.
8 Liu C Q, Wang H X, Li Z, et al. Chinese Journal of Experimental Formulae,2020,26(3),236(in Chinese).
刘长青,王海霞,李正,等.中国实验方剂学杂志,2020,26(3),236.
9 Kabir S M, Mathur K, Seyam A M. Composite Structures,2020,232,111476.
10 Cheng K, Lan H B, Zou S T, et al. Science in China: Science of Techno-logy,2017,47(2),149(in Chinese).
程凯,兰红波,邹淑亭,等.中国科学:技术科学,2017,47(2),149.
11 Ge J, Bai J, Yang Y, et al. Journal of Building Materials,2020,23(2),414(in Chinese).
葛杰,白洁,杨燕,等.建筑材料学报,2020,23(2),414.
12 Lille M, Nurmela A, Nordlund E, et al. Journal of Food Engineering,2018,220,20.
13 Zhong G,Mohammad V,Mei X, et al. ACS Omega,2019,4(21),19238.
14 Nida S, Anukiruthika T, Moses J A, et al. Waste and Biomass Valorization,2021,12(1),81.
15 Zhang B, Luo Y, Ma L, et al. Bio-design and Manufacturing,2018,1(1),2.
16 Mao Y, Zhong L, Zhou X, et al. Advanced Engineering Materials,2019,21,1900825.
17 Godoi F C, Prakash S, Bhandari B, et al. Journal of Food Engineering,2016,179,44.
18 Smay J E, Cesarano J, Lewis J A, et al. Langmuir,2002,18(14),5429.
19 Perrot A, Rangeard D, Pierre A. Materials & Structures,2016,49(4),1213.
20 Le T T, Austin S A, Lim S, et al. Materials and Structures,2012,45(8),1221.
21 Zhu S, Stieger M A, Goot A J, et al. Innovative Food Science and Emerging Technologies,2019,58,102214.
22 An T, Hwang K T, Kim J. Ceramics International,2020,46(5),6469.
23 Liu Z B, Zhang M, Bhandari B, et al. Trends in Food Science & Techno-logy,2017,69,83.
24 Cotabarren I M, Cruces S, Palla C A. Food Research International,2019,126,108676.
25 Liu Q L, Yang Q R. Journal of Building Materials,2020,23(5),6(in Chinese).
刘巧玲,杨钱荣.建筑材料学报,2020,23(5),6.
26 Durban M M, Golobic A M, Bukovsky E V, et al. Advanced Materials Technologies,2018,3(12),1800120.
27 Liu Y W, Yu Y, Liu C S, et al. LWT,2019,102,338.
28 Smay J E, Cesarano J, Lewis J A. Langmuir,2002,18,5429.
29 Lewis J A, Smay J E, Stuecker J, et al. Journal of the American Ceramic Society,2006,89(12),3599.
30 Leo S, Tallon C, Franks G V. Journal of the American Ceramic Society,2014,97,3807.
31 Rueschhoff L M, Costakis W J, Michie M, et al. International Journal of Applied Ceramic Technology,2016,13(5),821.
32 Wang H Y, Shen J P, Kline D J, et al. Advanced Materials,2019,31(23),1806575.
33 Liao J, Chen H, Luo H, et al. Journal of Materials Chemistry C,2017,24(5),5867.
34 Cotabarren I M, Cruces S, Palla C A. Food Research International,2019,126,108676.
35 Leo S, Tallon C, Franks G V. Journal of the American Ceramic Society,2014,97,3807.
36 Sun J, Gao L. Journal of the European Ceramic Society,2001,21,2447.
37 Cesarano J, Aksay I A. Journal of the American Ceramic Society,1988,71,1062.
38 Costakis W J, Rueschhoff L M, Diaz-Cano A I, et al. Journal of the European Ceramic Society,2016,14(36),3249.
39 Truby R L, Lewis J A. Nature: International Weekly Journal of Science,2016,540(7633),371.
40 Lozano R, Stevens L,Thompson B C, et al. Biomaterials,2015,67,264.
41 Li T, Zhai D, Ma B, et al. Advanced Science,2019,6(19),1901146.
42 Kim G H, Ahn S, Kim Y Y, et al. Journal of Materials Chemistry,2011,21(17),6165.
43 Kolesky D B, Truby R L, Sydney G A, et al. Advanced Materials (Deerfield Beach, Fla.),2014,26(19),2966.
44 Hansen C J, Saksena R, Kolesky D B. Advanced Materials,2013,25(1),96.
45 Lee V, Singh G, Trasatti J P, et al. Tissue Engineering: Part C,2014,20(6),473.
46 Lee W, Debasitis J C, Lee V K, et al. Biomaterials,2009,30(8),1587.
47 He C, Zhang M, Guo C F. Innovative Food Science and Emerging Technologies,2020,59,102250.
48 Zhu Y, Huan S Q, Bai L, et al. ACS Applied Materials & Interfaces,2020,12(9),11240.
49 Dick A, Bhandari B, Prakash S. Meat Science,2019,153,35.
50 Aebe M, Shirvanimoghaddam K. Applied Materials Today,2016,5(1),223.
51 Niu R Q, Zou H T, Wu Q, et al. Materials Reports A: Review papers,2015,29(10),128(in Chinese).
牛瑞琴,邹汉涛,吴倩,等.材料导报:综述篇,2015,29(10),128.
52 Liu Y F, Li Y N, Liu K, et al. New Chemical Materials,2020,48(2),15(in Chinese).
刘亚飞,李亚楠,刘奎,等.化工新型材料,2020,48(2),15.
53 Liu W, Li N, Zhou B, et al. Journal of Mechanical Engineering,2019,55(20),128(in Chinese).
刘伟,李能,周标,等.机械工程学报,2019,55(20),128.
54 Giachini P A, Gupta S S, Wang W, et al. Science Advances,2020,6(8),6.
55 Deuser B K, Tang L, Landers R G, et al. Journal of Manufacturing Science & Engineering,2013,135(4),041015.
56 Ma W D, Li S J, Yang L P, et al. China Mechanical Engineering,2019,30(13),1600(in Chinese).
马维东,李淑娟,杨磊鹏,等.中国机械工程,2019,30(13),1600.
57 Jiao P D, Li S J, Yang L P, et al. China Mechanical Engineering,2017,28(6),733(in Chinese).
焦盼德,李淑娟,杨磊鹏,等.中国机械工程,2017,28(6),733.
58 Tang D, Hao L, Li Y, et al. Journal of Alloys and Compounds,2019,814,152275.
59 Studart A R, Libanori R, Erb R M. Functional gradients in biological composites, Bio- and Bioinspired Nanomaterials, Verlag GmbH & Co.KGaA, Germany,2014,pp.337.
60 Li S, Wang K W. Bioinspiration & Biomimetics,2016,12(1),011001.
61 Studart A R. Advanced Materials,2012,24(37),5024.
62 Claussen K U, Scheibel T, Schmidt H W, et al. Macromolecular Mate-rials and Engineering,2012,297(10),938.
63 Ren L Q, Song Z Y, Liu H L,et al. Materials & Design,2018,156,470.
[1] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[2] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[3] 汤荣华, 冯曰海, 刘思余, 陈琪. 双填丝等离子弧增材制造高强高硬高氮钢组织与特性研究[J]. 材料导报, 2022, 36(3): 20060143-5.
[4] 杜军, 蒋敏博, 张永恒, 徐思远, 魏正英. TIG电弧复合熔滴沉积增材制造45钢/铅合金双金属结构工艺研究[J]. 材料导报, 2022, 36(2): 20100016-5.
[5] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[6] 侯雅青, 苏航, 张浩, 王畅畅. 金属材料多尺度高通量制备研究进展[J]. 材料导报, 2022, 36(1): 20080258-10.
[7] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[8] 杨广宇, 汤慧萍, 刘楠, 贾文鹏, 贾亮, 杨坤, 王建. 粉床型电子束增材制造W-Nb合金的缺陷及显微组织[J]. 材料导报, 2021, 35(z2): 448-451.
[9] 杨鑫, 马文君, 王岩, 刘世锋, 张兆洋, 王婉琳, 王犇, 汤慧萍. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.
[10] 杨杰, 黎静, 吴文杰, 于宁. 空间大型桁架在轨增材制造技术的研究现状与展望[J]. 材料导报, 2021, 35(3): 3159-3167.
[11] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[12] 常坤, 梁恩泉, 张韧, 郑敏, 魏雷, 黄文静, 林鑫. 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182.
[13] 刘莹, 杨俊杰, 易艳良, 张治国, 王小健, 李卫, 周圣丰. 抗菌不锈钢的抗菌原理、常规加工与增材制造[J]. 材料导报, 2021, 35(23): 23097-23105.
[14] 田根, 王文宇, 常青, 任智强, 王晓明, 朱胜. 电弧增材制造技术研究现状及展望[J]. 材料导报, 2021, 35(23): 23131-23141.
[15] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed