Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 20030137-7    https://doi.org/10.11896/cldb.20030137
  金属与金属基复合材料 |
功能梯度材料增材制造技术的研究进展及展望
夏晓光, 段国林*
河北工业大学机械工程学院,天津 300401
Advances and Prospects of Additive Manufacturing Technology of Functionally Graded Material
XIA Xiaoguang, DUAN Guolin*
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
下载:  全 文 ( PDF ) ( 4902KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 功能梯度材料(FGM)是一种非均质工程材料,在定制区域内具有空间渐变的组分、孔隙或微结构。FGM在生物医学工程、核工业、航空航天、半导体光电、国防军工等领域都有着广泛的应用。随着功能梯度材料的广泛应用,制备周期长、工序复杂的传统制造技术越来越难以满足可定制、形状复杂的功能梯度材料的快速制备要求,需要一种更柔性、更高效的制造技术来促进功能梯度材料的发展。增材制造(AM)技术是一种革新的材料成型技术,利用计算机辅助设计(CAD)能快速地将材料层层叠加成型,制备零件或原型。增材制造技术与功能梯度材料的结合有广阔的发展前景,尤其是能更柔性、更高效地制备形状复杂的零部件。在概述功能梯度材料的梯度类型及传统制造方法的基础上,本文综述了国内外不同增材制造技术制备功能梯度材料的研究进展,主要包括增材制造技术的基本原理、工艺特点和功能梯度材料的性能及应用范围,并针对前处理工艺中的零件成型方向和轨迹规划进行了论述,最后,总结了已存在的问题,并对未来发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏晓光
段国林
关键词:  功能梯度材料  增材制造技术  梯度类型  工艺特点    
Abstract: Functionally graded material (FGM) is an engineered material that is inhomogeneous and can be purposefully processed to obtain conti-nuously varying spatial compositions, porosity or microstructures over a definable geometrical length. FGM can be used in a number of applications in engineering, such as biomedical engineering, nuclear industry, aerospace, semiconductor and optoelectric, defence and military, etc. With the widespread application of functionally graded materials, traditional manufacturing technologies with long production cycles and complex procedures are more and more difficult to meet the rapid preparation requirements of customizable and complex-shaped functionally graded material. A more flexible and efficient manufacturing technology is needed to promote the development of functionally graded materials. Additive manufacturing (AM) is a novel material processing approach to create parts or prototypes layer-by-layer directly from a computer aided design (CAD) file. The combination of additive manufacturing and FGM is very promising, especially towards preparation of complex-shaped components with more flexibility and efficiency. In this paper, the gradient types and traditional machining process of FGM are briefly summarized. The advances in preparation of FGM by different kinds of AM technologies at home and abroad are presented, including the basic principles, process features of AM technologies and the properties and applications of FGM. The part orientation and path planning of pre-treatment process are also discussed. Finally, the existing problems are discussed and future trends are prospected.
Key words:  functionally graded material    additive manufacturing technology    gradient types    process features
发布日期:  2022-05-24
ZTFLH:  TF145.9  
基金资助: 河北省科技计划资助项目(17211808D)
通讯作者:  glduan@hebut.edu.cn   
作者简介:  夏晓光,2014年6月毕业于昆明理工大学,获得工学硕士学位。现为河北工业大学机械工程学院博士研究生,在段国林教授的指导下进行研究。目前主要研究领域为陶瓷增材制造。
段国林,河北工业大学机械工程学院教授、博士研究生导师。1984年6月本科毕业于河北工业大学机械工程学院,1997年9月在天津大学机械工程学院取得博士学位。主要从事CAD/CAM、人工智能、增材制造等方面的研究与教学工作。
引用本文:    
夏晓光, 段国林. 功能梯度材料增材制造技术的研究进展及展望[J]. 材料导报, 2022, 36(10): 20030137-7.
XIA Xiaoguang, DUAN Guolin. Advances and Prospects of Additive Manufacturing Technology of Functionally Graded Material. Materials Reports, 2022, 36(10): 20030137-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030137  或          http://www.mater-rep.com/CN/Y2022/V36/I10/20030137
1 Mahamood R M. Functionally graded materials, Springer International Publishing AG, Switzerland, 2017.
2 Masayuki N, Toshio H, Ryuzow W. Journal of the Japan Society for Composite Materials, 1987, 13(6), 257.
3 Parihar R S, Setti S G, Sahu R K. Science and Engineering of Composite Materials, 2018, 25(2), 309.
4 Zhang B, Jaiswal P, Rai R, et al. Journal of Computing and Information Science in Engineering, 2018, 18(4), 041002.
5 Naebe M, Shirvanimoghaddam K. Applied Materials Today, 2016, 5, 223.
6 Lu B H, Li D C. Machine Building & Automation, 2013(4), 1(in Chinese).
卢秉恒,李涤尘. 机械制造与自动化, 2013(4), 1.
7 Liu Z, Meyers M A, Zhang Z, et al. Progress in Materials Science, 2017, 88, 467.
8 Tan X, Kok Y, Tan Y J, et al. Acta Materialia, 2015, 97, 1.
9 Soldevila L, Royo J, Oxman N. 3D Printing and Additive Manufacturing, 2014, 1(3), 141.
10 Leu M C, Deuser B K, Tang L, et al. CIRP Annals, 2012, 61(1), 223.
11 Lai Q, Abrahams R, Yan W, et al. Composites Part B: Engineering, 2017, 130, 174.
12 Yan Y, Li S, Xiong Z, et al. Journal of Mechanical Engineering, 2010, 46(5), 93(in Chinese).
颜永年,李生杰,熊卓,等. 机械工程学报, 2010, 46(5), 93.
13 Liu L, Xiong Z, Yan Y, et al. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2009, 88(1), 254.
14 Zhang A F, Li D C, Liang S D, et al. Aeronautical Manufactu-ring Technology, 2016(22), 16(in Chinese).
张安峰,李涤尘,梁少端,等. 航空制造技术, 2016(22), 16.
15 Li X, Huang W D. Scientia Sinica(Informationis), 2015, 45(9), 1116(in Chinese).
林鑫, 黄卫东. 中国科学(信息科学), 2015, 45(9), 1111.
16 Han C, Li Y, Wang Q, et al. Materials & Design, 2018, 141, 256.
17 Mahamood R M, Akinlabi E T. In: Conference Record of the 2012 World Congress on Engineering. London, 2012, pp. 0966.
18 Fang Y, Su Y F, Zhang Y S, et al. Journal of the Chinese Ceramic Society, 2016, 44(12), 1729(in Chinese).
方媛, 苏云峰, 张永胜, 等. 硅酸盐学报, 2016, 44(12), 1729.
19 Li Q, Zhang F F, Yu J Y, et al. Journal of Functional Materials, 2013, 44(14), 2032(in Chinese).
李强, 张峰峰, 于景媛, 等. 功能材料, 2013, 44(14), 2032.
20 Lu L, Chekroun M, Abraham O, et al. NDT & E International, 2011, 44(2), 169.
21 Jin G, Takeuchi M, Honda S, et al. Materials Chemistry and Physics, 2005, 89(2), 238.
22 Scaffaro R, Lopresti F, Botta L, et al. Macromolecular Materials and Engineering, 2016, 301(2), 182.
23 Dinda G P, Dasgupta A K, Bhattacharya S, et al. Metallurgical & Materials Transactions A, 2013, 44(5), 2233.
24 Kim Y, Choi J T, Choi J K, et al. Materials Letters, 1996, 26(4), 249.
25 Mustafa U, Balci E, Sarikan B, et al. Materials & Design, 2014, 56, 31.
26 Peng W B, Zhao Z M, Yin D J. Hot Working Technology, 2019, 48(8), 119(in Chinese).
彭文斌, 赵忠民, 尹德军. 热加工工艺, 2019, 48(8),119.
27 Li J, Chen T, Hao Y, et al. Hot Working Technology, 2007, 36(5), 31(in Chinese).
李健, 陈体军, 郝远, 等. 热加工工艺, 2007, 36(5), 31.
28 Suresh S, Mortesen A. Fundamentals of functionally gradied materials, processing and thermomechanical behavior of graded metals and metal-ceramic composites, IOM Communications Ltd., UK, 1998.
29 Birla N C, Demirci M, Baykara T. Journal of Materials Science Letters, 1993, 12(14), 1099.
30 Li Yi. Materials China, 2016, 35(9), 658(in Chinese).
李毅. 中国材料进展, 2016, 35(9), 658.
31 Zhang C, Chen F, Huang Z, et al. Materials Science & Engineering A, 2019, 764, 138209.
32 Yang Y H. Advances in Aeronautical Science and Engineering, 2019, 10(3), 309(in Chinese).
杨延华. 航空工程进展, 2019, 10(3), 309.
33 Mohamed O A, Masood S H, Bhowmik J L. Advances in Manufacturing, 2015, 3(1), 42.
34 Srivastava M, Maheshwari S, Kundra T K. Materials Today: Proceedings, 2015, 2(5), 3471.
35 Garland A, Fadel G. Journal of Mechanical Design, 2015, 137, 11140711.
36 Garland A, Fadel G. Journal of Computing & Information Science in Engineering, 2019, 19(2), 021007.
37 Franchin G, Scanferla P, Zeffiro L, et al. Journal of the European Ceramic Society, 2017, 37(6), 2481.
38 Tang D, Hao L, Li Y, et al. Journal of Alloys and Compounds, 2020, 814, 152275.
39 Li A. Paste development and co-sintering test of zirconium carbide and tungsten in freeze-form extrusion fabrication. Master's Thesis, Missouri University of Science and Technology, USA, 2013.
40 Jiao P D, Li S J, Yang L P, et al. China Mechanical Engineering, 2017, 28(6), 733(in Chinese).
焦盼德,李淑娟,杨磊鹏,等. 中国机械工程, 2017, 28(6), 733.
41 Cheng K, Lan H B, Zou S T, et al. Scientia Sinica(Technologica), 2017, 47(2), 149(in Chinese).
程凯,兰红波,邹淑亭,等. 中国科学(技术科学), 2017, 47(2), 149.
42 Maskery I, Hussey A, Panesar A, et al. Journal of Cellular Plastics, 2017, 53(2), 151.
43 Sudarmadji N, Tan J Y, Leong K F, et al. Acta Biomaterialia, 2011, 7(2), 530.
44 Yan Y N, Qi H B, Lin F, et al. Chinese Journal of Mechanical Enginee-ring, 2007, 43(6), 87(in Chinese).
颜永年,齐海波,林峰,等. 机械工程学报, 2007, 43(6), 87.
45 Yan W T, Qian Y, Lin F. Aeronautical Manufacturing Technology, 2017(10), 50(in Chinese).
闫文韬,钱亚,林峰. 航空制造技术, 2017(10), 50.
46 Yan W, Ge W, Smith J, et al. Acta Materialia, 2016, 115, 403.
47 Hu Y, Cong W. Ceramics International, 2018, 44(17), 20599.
48 Bandyopadhyay A, Krishna B V, Xue W, et al. Journal of Materials Science: Materials in Medicine, 2009, 20, 29.
49 Durejko T, Zietala M, Polkowski W, et al. Materials & Design, 2014, 63, 766.
50 Shi Y, Li Y F, Liu J, et al. Chinese Journal of Mechanical Engineering, 2017, 53(6), 80(in Chinese).
石岩,李云峰,刘佳,等. 机械工程学报, 2017, 53(6), 80.
51 Mahamood R M, Akinlabi E T. Materials & Design, 2015, 84, 402.
52 Shah K, Haq I U, Khan A, et al. Materials & Design, 2014, 54, 531.
53 Kim H, Lin Y, Tseng T, et al. Rapid Prototyping Journal, 2018, 24(3), 645.
54 Li D F, Chen J M, Yuan Y P, et al. Journal of Beijing University of Technology, 2015, 41(12), 1769(in Chinese).
李东方,陈继民,袁艳萍,等. 北京工业大学学报, 2015, 41(12), 1769.
55 Yang F, Lian Q, Wu X Q, et al. Chinese Journal of Mechanical Enginee-ring, 2017, 53(7), 138(in Chinese).
杨飞,连芩,武向权,等. 机械工程学报, 2017, 53(7), 138.
56 Larsen E, Larsen N, Almdal K, et al. Journal of Polymer Science Part B-Polymer Physics, 2016, 54(13), 1195.
57 Huang P, Deng D, Chen Y. In: Conference Record of ASME Internatio-nal Mechanical Engineering Congress and Exposition (IMECE2013). San Diego, 2013.
58 Zhao J B, He L Y, Liu W J, et al. Journal of Computer-Aided Design & Computer Graphics, 2006, 18(3), 456(in Chinese).
赵吉宾,何利英,刘伟军,等. 计算机辅助设计与图形学学报, 2006, 18(3),456.
59 Fang L, Hou Z W, Huang J R, et al. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(1), 99(in Chinese).
方力, 侯智文, 黄俊润, 等.南京航空航天大学学报, 2019, 51(1), 99.
60 Yang R, Jia Z Y, Liu B J, et al. China Mechanical Enginee-ring, 2003, 14(19), 1701.
杨睿, 贾振元, 刘碧静, 等.中国机械工程, 2003, 14(19), 1701.
61 Mi S, Wu X, Zeng L. The International Journal of Advanced Manufactu-ring Technology, 2018, 94(5), 1933.
62 Zhou M. International Journal of Production Research, 2004, 42(2), 405.
63 Xu A, Shaw L. Computer-Aided Design, 2005, 37(12), 1308.
64 Wang X P, Zhang H O, Wang G L. China Mechanical Engineering, 2017, 28(16), 1994(in Chinese).
王湘平, 张海鸥, 王桂兰.中国机械工程, 2017, 28(16), 1994.
65 Muller P, Hascoet J Y, Mognol P. Rapid Prototyping Journal, 2014, 22(6), 511.
[1] 张静, 周婧, 段国林. 基于直写成型技术的多材料打印研究进展[J]. 材料导报, 2022, 36(8): 20080135-8.
[2] 栗卓新, 祝静, 李红. 增材制造技术环境影响及其生命周期评价的研究进展[J]. 材料导报, 2021, 35(11): 11173-11179.
[3] 刘兵飞, 刘艳艳, 周蕊. 航空发动机变形齿的新材料设计与力学性能[J]. 材料导报, 2020, 34(2): 2117-2122.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed