Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 20110097-12    https://doi.org/10.11896/cldb.20110097
  无机非金属及其复合材料 |
Al2O3陶瓷增材制造工艺研究进展
黎业华1, 聂光临1, 盛鹏飞1, 邓欣1, 包亦望2, 伍尚华1
1 广东工业大学机电工程学院,广州 510006
2 中国建筑材料科学研究总院有限公司绿色建筑材料国家重点实验室,北京 100024
Research Progress on Additive Manufacturing Technologies of Al2O3 Ceramic
LI Yehua1, NIE Guanglin1, SHENG Pengfei1, DENG Xin1, BAO Yiwang2, WU Shanghua1
1 School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
2 State Key Laboratory of Green Building Materials, China Building Materials Academy Co., Ltd., Beijing 100024, China
下载:  全 文 ( PDF ) ( 5417KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Al2O3陶瓷具有优异的力学性能、热学性能、化学稳定性能及生物相容性,被广泛用于机械加工、能源化工、生物医疗等领域,但是Al2O3陶瓷固有的硬度及脆性导致其在成型及加工方面存在较大的困难,阻碍Al2O3陶瓷应用范围的进一步拓展。而目前快速发展的增材制造技术可以有效解决上述成型难题,特别是在制备复杂形状的Al2O3陶瓷方面具有独特的优势。
目前用于Al2O3陶瓷成型的增材制造工艺主要涉及粘结剂喷射、粉末床熔融、材料喷射、材料挤出、薄材叠层、立体光固化等。(1)粘结剂喷射适用于大尺寸Al2O3陶瓷零部件的成型,其工艺特性易使制备的Al2O3陶瓷的致密度较低,通常需要利用浸渗技术提高Al2O3陶瓷的致密度和力学性能。(2)粉末床熔融包括选择性激光熔融和选择性激光烧结两种成型技术:选择性激光熔融可一步制备Al2O3陶瓷零部件,但是较大的热应力会使Al2O3陶瓷内部形成裂纹缺陷;选择性激光烧结同样难以制备致密度高的Al2O3陶瓷,通常需要利用激光重熔、热等静压及浸渗技术提高Al2O3陶瓷的致密度和力学性能。(3)材料喷射适用于小尺寸、结构简单的Al2O3陶瓷零件的成型,难以制备悬空或空心结构的Al2O3陶瓷零部件。(4)材料挤出适用于高纵横比多孔Al2O3陶瓷零部件的成型,但是打印零部件的表面光洁度较低。(5)薄材叠层的成型速度快,适用于Al2O3基层合陶瓷零部件的成型,但是存在明显的台阶效应,且材料利用率较低。(6)立体光固化适用于高致密度、高表面光洁度、复杂形状的Al2O3陶瓷零部件的成型,具有广阔的应用前景,但是高固含量、低粘度Al2O3陶瓷浆料的配制以及高强韧、高可靠性Al2O3陶瓷构件的制备仍是一项挑战。
本文重点介绍了Al2O3陶瓷增材制造工艺的成型原理、研究现状、优势及存在的问题,并对其发展趋势进行展望,以期为从事Al2O3陶瓷增材制造的研究人员提供借鉴和参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黎业华
聂光临
盛鹏飞
邓欣
包亦望
伍尚华
关键词:  Al2O3陶瓷  增材制造  复杂形状  成型  相对密度    
Abstract: Al2O3 ceramics are widely used in various fields such as mechanical processing, energy & chemical industry, biology medicine, owing to their excellent mechanical properties, thermal properties, chemical stability and biocompatibility. However, the inherent hardness and brittleness of Al2O3 ceramics bring great difficulties for their shaping and processing, and the further extended development of Al2O3 ceramics is hindered. At present, the fast developing additive manufacturing technology can effectively solve the above shaping problems, and more specifically it has outstanding advantages in the fabrication of complex shaped Al2O3 ceramics.
The current additive manufacturing technologies used for Al2O3 ceramic shaping mainly involves binder jetting, powder bed fusion, material jetting, material extrusion, sheet lamination, stereolithography and so on. (1) Binder jetting is suitable for shaping the large scale Al2O3 ceramic parts, but their relative densities are generally low due to the processing characteristics of binder jetting, so the infiltration technology is usually needed to improve the relative densities and mechanical properties of the prepared Al2O3 ceramics. (2) Powder bed fusion includes selective laser melting (SLM) and selective laser sintering (SLS). SLM is used to prepare Al2O3 ceramic parts directly in one step, but the produced thermal stress can result in the formation of crack defects in the prepared Al2O3 ceramics; it is also difficult for SLS to prepare Al2O3 ceramics with high relative density, and thus the laser remelting, hot isostatic pressing and infiltration techniques are usually used to improve the relative density and mechanical properties of the prepared Al2O3 ceramics. (3) Material jetting is appropriate for the production of Al2O3 ceramic parts with small size and simple structure, and is futile to be applied in the fabrication of Al2O3 ceramic parts with suspended or hollow structures. (4) Material extrusion is suitable for the shaping of porous Al2O3 ceramic parts with high aspect ratio, but the finish of printed parts is relatively low. (5) Sheet lamination has the advantage of fast shaping speed and is suitable for the preparation of Al2O3-based laminated ceramic parts; meanwhile there exists some shortcomings, e.g. the stair-stepping effect and low material utilization rate. (6) Stereolithography is an efficient method to prepare the Al2O3 ceramic parts with high relative density, high surface finish and complex shapes, which has promising application foreground, but there still remain challenging tasks in the preparation of Al2O3 ceramic slurry with high solid content and low viscosity and the fabrication of Al2O3 cera-mic components with high strength, toughness and reliability.
In this paper, the shaping principles, recent developments, advantages and existing problems of the additive manufacturing technologies for Al2O3 ceramic were overviewed in detail. In addition, the prospect of its development was given, so as to provide experience and lessons for the researchers in the field of Al2O3 ceramic additive manufacturing.
Key words:  Al2O3 ceramic    additive manufacturing    complex shape    shaping    relative density
发布日期:  2022-07-26
ZTFLH:  TQ174.1  
  TB332  
基金资助: 广东省”珠江人才计划”本土创新科研团队项目(2017BT01C169);绿色建筑材料国家重点实验室开放基金(2019GBM03);广东省基础与应用基础研究基金项目(2020A1515010004);季华实验室科研项目(X190061UZ190)
通讯作者:  buildingmaterials8@163.com; swu@gdut.edu.cn   
作者简介:  黎业华,2017年6月与2020年6月分别于江西理工大学和广东工业大学获得机械工程学士学位与硕士学位。现为广东工业大学机电工程学院博士研究生,在伍尚华教授的指导下进行研究。目前主要研究领域为氧化铝基陶瓷及其增材制造。
聂光临,2012年、2015年分别于济南大学和北京工业大学获材料科学与工程学士、硕士学位。2018年7月毕业于中国建筑材料科学研究总院,获得材料学博士学位。2018年9月至2021年9月在广东工业大学进行博士后研究,主要从事陶瓷材料的3D打印技术、陶瓷强韧化技术以及材料力学性评价技术的研究。已发表20余篇论文,其中SCI/EI检索论文16篇;申请10余项国家发明专利。
伍尚华,1984年、1987年于西安交通大学分别获得机械工程学士学位和材料科学与工程硕士学位,2001年于美国阿拉巴马大学获得材料工程博士学位。现任广东工业大学特聘教授、博士研究生导师,兼任中国机械工程学会增材制造专委会和工程陶瓷专委会成员以及全国增材制造标准化技术委员会成员。先后在世界一流实验室和跨国公司从事科研创新工作,在先进陶瓷制造技术等领域拥有近180项已获美国、日本、中国等国家专利局授权的或者正在审理的专利核心技术。在Advanced MaterialsAdditive ManufacturingJournal of the American Ceramic Society等刊物上发表科研论文150多篇。目前主要研究方向包括陶瓷材料与金属陶瓷增材制造(3D打印)、纳米陶瓷和纳米陶瓷复合材料、陶瓷高温耐磨涂层、难加工材料的高速高效加工。
引用本文:    
黎业华, 聂光临, 盛鹏飞, 邓欣, 包亦望, 伍尚华. Al2O3陶瓷增材制造工艺研究进展[J]. 材料导报, 2022, 36(14): 20110097-12.
LI Yehua, NIE Guanglin, SHENG Pengfei, DENG Xin, BAO Yiwang, WU Shanghua. Research Progress on Additive Manufacturing Technologies of Al2O3 Ceramic. Materials Reports, 2022, 36(14): 20110097-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110097  或          http://www.mater-rep.com/CN/Y2022/V36/I14/20110097
1 Xie Z P. Structural ceramics, Tsinghua University Press, China, 2011(in Chinese).
谢志鹏. 结构陶瓷, 清华大学出版社, 2011.
2 Zou B. Mechanical Management and Development, 2004(3), 37(in Chinese).
周彬. 机械管理开发, 2004(3), 37.
3 Zhang X F, Yu G Q, Jiang L W. Foshan Ceramics, 2010(2), 38(in Chinese).
张小锋, 于国强, 姜林文. 佛山陶瓷, 2010(2), 38.
4 Chen J W,Zhai W L. Chinese Journal of Traditional Medical Traumatology & Orthopedics, 2011, 19(6), 67(in Chinese).
陈界文, 翟文亮. 中国中医骨伤科杂志, 2011, 19(6), 67.
5 Lu Y, Gong J L. Journal of Henan University of Science & Technology(Natural Science), 2019, 40(4), 11(in Chinese).
路妍, 公静利. 河南科技大学学报(自然科学版),2019,40(4),11.
6 Liang D, He R J, Fang D N. Advanced Ceramics, 2017(4), 3(in Chinese).
梁栋, 何汝杰, 方岱宁. 现代技术陶瓷, 2017(4), 3.
7 Wang Z Y, Zhao Y H, Zhao J B, et al. Vacuum, 2020, 57(1), 67(in Chinese).
王志永, 赵宇辉, 赵吉宾, 等. 真空, 2020, 57(1), 67.
8 Huang M J, Wu H D, Huang R J, et al. Advanced Ceramics, 2017(4), 248(in Chinese).
黄淼俊, 伍海东, 黄容基, 等. 现代技术陶瓷, 2017(4), 248.
9 GB/T 35021- 2018,增材制造工艺分类及原料.中国标准出版社,2018.
10 Gonzalez J A, Mireles J, Lin Y, et al. Ceramics International, 2016, 42(9), 10559.
11 Kunchala P, Kappagantula K. Materials & Design, 2018, 155(3), 443.
12 Huang S, Ye C, Zhao H, et al. Additive Manufacturing, 2019, 29, 100802.
13 Du W, Ren X, Ma C, et al. Materials Letters, 2019, 234, 327.
14 Jimenez M, Ding D, Su L, et al. Additive Manufacturing, 2019, 30, 100864.
15 Maleksaeedi S, Eng H, Wiria F, et al. Journal of Materials Processing Technology, 2014, 214(7), 1301.
16 Stumpf M, Travitzky N, Greil P, et al. Journal of the European Ceramic Society, 2018, 38, 3603.
17 Melcher R, Martins S, Travitzky N. Materials Letters,2006,60(4),572.
18 Zhang W, Melcher R, Travitzky N, et al. Advanced Engineering Mate-rials, 2009, 11(12), 1039.
19 Cao S, Wei X F, Sun Z J, et al. Journal of Materials Processing Techno-logy, 2015, 217, 241.
20 Yao D, Gomes C M, Zeng Y F, et al. Materials Letters, 2015, 147(15), 116.
21 Li X, Gao M, Jiang Y. Ceramics International, 2016, 42(10), 12531.
22 Lee G, Carrillo M, McKittrick J, et al. Additive Manufacturing, 2020, 33, 101107.
23 Yves-Christian H, Jan W, Wilhelm M, et al. Physics Procedia, 2010, 5, 587.
24 Deckers J, Meyers S, Kruth J P, et al. Physics Procedia,2014,56,117.
25 Zheng Y, Zhang K, Liu T T, et al. Ceramics International, 2019, 45(1), 175.
26 Fan Z, Lu M, Huang H, et al. Ceramics International, 2018, 44(8), 9484.
27 Zhang K, Liu T, Liao W, et al. Rapid Prototyping Journal, 2018, 24(2), 333.
28 Shahzad K, Deckers J, Boury S, et al. Ceramics International, 2012, 38(2), 1241.
29 Shahzad K, Deckers J, Kruth J P, et al. Journal of Materials Processing Technology, 2013, 213(9), 1484.
30 Cardon L, Deckers J, Verberckmoes A, et al. Journal of Applied Polymer Science, 2012, 128(3), 2121.
31 Mahmoud N S, Foroozmehr E, Badrossamay M. Ceramics International, 2018, 44(1), 596.
32 Zou Y, Li C H, Liu J A, et al. Ceramics International, 2019, 45(10), 12654.
33 Deckers J, Kruth J P, Shahzad K, et al. Cirp Annals Manufacturing Technology, 2012, 61(1), 211.
34 Liu K, Shi Y, Li C, et al. Ceramics International, 2014, 40(5), 7099.
35 Tang H H, Chiu M L, Yen H C. Journal of the European Ceramic Society, 2011, 31(8), 1383.
36 Reis N, Seerden K A M, Derby B, et al. Solid Freeform and Additive Fabrication, 1999, 542, 147.
37 Derby B, Reis N, Seerden K A M, et al. MRS Online Proceedings Library Archive, 2000, 625, 195.
38 Seerden K A M, Reis N, Evans J R G,et al. Journal of the American Ceramic Society, 2001, 84(11), 2514.
39 Peng Z J, Luo X D, Xie Z P, et al. Ceramics International, 2018, 44(14), 16766.
40 Nötzel D, Eickhoff R, Hanemann T. Materials, 2018, 11(8), 1463.
41 Orlovská M, Chlup Z, Bača Ł, et al. Journal of the European Ceramic Society, 2020, 40(14), 4837.
42 Arnesano A, Padmanabhan S K, Notarangelo A, et al. Ceramics International, 2020, 46(2), 2206.
43 PilleuxM E, Safari A, Allahverdi M, et al. Rapid Prototyping Journal, 2002, 8(1), 46.
44 Conzelmann N A, Gorjan L, Sarraf F, et al. Rapid Prototyping Journal, 2020, 26(6), 1035.
45 Rueschhoff L, Costakis W, Michie M, et al. International Journal of Applied Ceramic Technology, 2016, 13, 821.
46 Hensen T J, Aguirre T G, Cramer C L, et al. Additive Manufacturing, 2018, 23, 140.
47 Yang L L, Zeng X J, Zhang Y, et al. Materials Letters, 2019, 255(15), 126564.
48 Li W B, Ghazanfari A, McMillen D, et al. CIRP Annals, 2017, 66(1), 225.
49 Sirisala M, Papiya B, Pandu R, et al. Ceramics International, 2018, 44(16), 19278.
50 Marchi C S, Kouzeli M, Rao R, et al. Scripta Materialia, 2003, 49(9), 861.
51 Fu Z W, Freihart M, Wahl L, et al. Journal of the European Ceramic Society, 2017, 37(9), 3115.
52 Zhang Y M, He X D, Han J C. Materials Letters, 1999, 40(6), 275.
53 Zhang Y, He X, Du S, et al. International Journal of Advanced Manufacturing Technology, 2001, 17(7), 531.
54 Cui X M, Ouyang S X, Yu Z Y, et al. Materials Letters, 2003, 57(7), 1300.
55 Das A, Madras G, Dasgupta N, et al. Journal of the European Ceramic Society, 2003, 23(7), 1013.
56 Pfeiffer S, Lorenz H, Fu Z W, et al. Ceramics International, 2018, 44(17), 20835.
57 Yang S B, Chen H, Zhang G, et al. Journal of Ceramics, 2019, 40(1), 67(in Chinese).
杨少斌, 陈桦, 张耿,等. 陶瓷学报, 2019, 40(1), 67.
58 Zhang G, Chen H, Yang S, et al. Journal of the European Ceramic Society, 2018, 38(11), 4014.
59 Li J, Pan Y B, Liu Y, et al. Journal of the Chinese Ceramic Society, 2009, 37(2), 270(in Chinese).
李江, 潘裕柏, 刘珏, 等. 硅酸盐学报, 2009, 37(2), 270.
60 Li A M, Xu Y J, Wang S H, et al. Advanced Ceramics, 2002(4), 10(in Chinese).
李安明, 许业静, 王树海,等. 现代技术陶瓷, 2002(4), 10.
61 Song X X, Feng Y B, Qiu T, et al. Journal of Synthetic Crystals, 2015, 44(12), 3634(in Chinese).
宋秀香, 冯永宝, 丘泰,等. 人工晶体学报, 2015, 44(12), 3634.
62 Ji H H, Zhao J, Lu H X, et al. Journal of the Chinese Ceramic Society, 2019, 47(9), 1288(in Chinese).
吉浩浩, 赵瑾, 卢红霞, 等. 硅酸盐学报, 2019, 47(9), 1288.
63 Ge X Z, Ge Q, Zhang H B, et al. Jiangsu Ceramics, 2018, 51(6), 28(in Chinese).
葛兴泽, 葛琦, 张洪波, 等. 江苏陶瓷, 2018, 51(6),28.
64 Chabok H, Zhou C, Chen Y, et al. International Symposium on Flexible Automation, 2012, 45110, 433.
65 Griffith M L, Halloran J W. Journal of the American Ceramic Society, 2005,79(10), 2601.
66 Licciulli A, Esposito C C, Greco A, et al. Journal of the European Ceramic Society, 2005, 25(9), 1581.
67 Adake C V, Bhargava P, Gandhi P. Ceramics International, 2015, 41(4), 5301.
68 Zhang K Q, Xie C, Wang G, et al. Ceramics International, 2019, 45(1), 203.
69 Jiao S Z, Qi W, Chen S, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(1), 260(in Chinese).
焦守政, 齐文, 陈松, 等. 硅酸盐通报, 2020, 39(1), 260.
70 Goswami A, Ankit K, Balashanmugam N, et al. Ceramics International, 2014, 40(2),3655.
71 Li K H, Zhao Z. Ceramics International, 2017, 43(6), 4761.
72 Zhang S, Sha N, Zhao Z, et al. Journal of the European Ceramic Society, 2017,37(4), 1607.
73 Xing H, Zou B, Lai Q, et al. Powder Technology, 2018, 338, 153.
74 De Hazan Y, Heinecke J, Weber A, et al. Journal of Colloid & Interface Science, 2009, 337(1), 66.
75 Zheng T Q, Wang W, Sun J X, et al. Ceramics International, 2020, 46(7), 8682.
76 Xu X H, Zhou S X, Wu J F, et al. Ceramics International, 2020, 46(2), 1895.
77 Wu X Q, Lian Q, Li D C, et al. Ceramics International, 2019, 45(3), 3687.
78 Wang K, Qiu M B, Jiao C, et al. Ceramics International, 2020, 46(2), 2438.
79 Xing Z, Liu W, Chen Y, et al. Ceramics International, 2018, 44(16), 19939.
80 Schwentenwein M, Homa J. International Journal of Applied Ceramic Technology, 2015, 12(1), 1.
81 Zhou M P, Liu W, Wu H D, et al. Ceramics International, 2016, 42(10), 11598.
82 Li H, Liu Y S, Liu Y S, et al. Acta Metallurgica Sinica, 2020, 33(2), 204.
83 An D, Li H Z, Xie Z P, et al. International Journal of Applied Ceramic Technology, 2017, 14(5), 836.
84 Liu W, Wu H D, Tian Z, et al. Journal of the American Ceramic Society, 2019, 102(5), 2257.
85 Shuai X G, Zeng Y, Li P R, et al. Journal of Materials Science, 2020, 55, 6771.
86 Zhang L, Feih S, Daynes S, et al. Journal of the European Ceramic Society, 2020, 40(2), 408.
87 Al-Ketan O, Pelanconi M, Ortona A, et al. Journal of the American Ceramic Society, 2019, 102(10), 6176.
88 Scheithauer U, Schwarzer E, Moritz T, et al. Journal of Materials Engineering & Performance, 2018, 27(1), 14.
89 Lantada A D, de Blas Romero A, Schwentenwein M, et al. Smart Materials and Structures, 2016, 25(5), 054015.
[1] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[2] 张静, 周婧, 段国林. 基于直写成型技术的多材料打印研究进展[J]. 材料导报, 2022, 36(8): 20080135-8.
[3] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[4] 李振扬, 王盼, 张海文, 周涵. 辐射冷却材料的制备方法综述[J]. 材料导报, 2022, 36(3): 20120012-6.
[5] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[6] 汤荣华, 冯曰海, 刘思余, 陈琪. 双填丝等离子弧增材制造高强高硬高氮钢组织与特性研究[J]. 材料导报, 2022, 36(3): 20060143-5.
[7] 杜军, 蒋敏博, 张永恒, 徐思远, 魏正英. TIG电弧复合熔滴沉积增材制造45钢/铅合金双金属结构工艺研究[J]. 材料导报, 2022, 36(2): 20100016-5.
[8] 龙广成, 杨恺, 程智清, 王慧慧, 石晔, 谢友均. 不同工艺制度下纳米颗粒对UHPC强度的影响[J]. 材料导报, 2022, 36(13): 21040093-6.
[9] 石玗, 朱珍文, 张刚, 李璐鹏. 金属电弧增材成形控制关键技术及研究现状[J]. 材料导报, 2022, 36(12): 20090337-8.
[10] 夏晓光, 段国林. 功能梯度材料增材制造技术的研究进展及展望[J]. 材料导报, 2022, 36(10): 20030137-7.
[11] 李时春, 莫彬, 肖罡, 苏飞. 激光增材制造成形质量表征与调控研究进展[J]. 材料导报, 2022, 36(10): 20100127-9.
[12] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[13] 侯雅青, 苏航, 张浩, 王畅畅. 金属材料多尺度高通量制备研究进展[J]. 材料导报, 2022, 36(1): 20080258-10.
[14] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[15] 杨广宇, 汤慧萍, 刘楠, 贾文鹏, 贾亮, 杨坤, 王建. 粉床型电子束增材制造W-Nb合金的缺陷及显微组织[J]. 材料导报, 2021, 35(z2): 448-451.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed