Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20120012-6    https://doi.org/10.11896/cldb.20120012
  金属与金属基复合材料 |
辐射冷却材料的制备方法综述
李振扬, 王盼, 张海文, 周涵
上海交通大学金属基复合材料国家重点实验室,上海 200240
Review on the Preparation Methods of Radiative Cooling Materials
LI Zhenyang, WANG Pan, ZHANG Haiwen, ZHOU Han
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 6695KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着能源和环境问题的日益严重,不需要额外消耗能量的辐射冷却技术引起了广泛关注。基于地球和宇宙的巨大温差,辐射冷却技术能够直接将热量以辐射的形式传递到外太空,不仅能够产生净冷却效果,而且避免了废热排放带来的诸多环保问题。
早期研究利用涂敷法将具有辐射冷却能力的涂料刷涂在物体表面,该方法仅能实现材料的夜间降温。为了实现材料的日间辐射冷却则需要在其中引入特定结构,如多层膜结构、二维光子晶体结构、超结构等以提高它的可见近红外波段的反射率和大气窗口的发射率。然而,相关制备技术存在工艺复杂、制备成本高、难以宏量制备等局限性,严重阻碍了辐射冷却材料工程应用的推进。
随着辐射冷却理论研究的深入以及更多先进制备技术的发展,制备方法和手段也越来越多样化,如真空蒸镀、微纳米加工技术、直接涂敷法、挤出成型技术、静电纺丝法等相继被报道,通过这些方法能够低成本地制备出较大面积的辐射冷却材料,进一步推动了辐射冷却材料及技术的应用。
本文归纳了辐射冷却材料制备方法的研究现状,对不同制备技术的优缺点进行了对比分析。首先概述了辐射冷却常用材料及其成型方式;然后介绍了辐射冷却材料常用制备方法及各自优缺点,简述了适用于特殊材料或应用场景的制备方法;最后总结了目前辐射冷却材料制备存在的问题并展望了未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李振扬
王盼
张海文
周涵
关键词:  辐射冷却  真空蒸镀  微纳米加工  挤出成型  直接涂敷    
Abstract: In recent years, with the worsening of energy and environmental problems, the radiative cooling technology which can cool the object without energy consumption has attracted worldwide attention. This cooling technology uses the extract temperature difference between the earth and the universe to transfer heat directly to outer space in the form of radiation without energy input, which is able to avoid many energy and environmental problems caused by waste heat.
Early researches brushed the paint with radiative cooling ability on the object surface, which can only achieve cooling effect at night. In order to achieve radiative cooling during daytime, it is generally necessary to introduce materials with specific structures, such as multilayer film structure, two-dimensional photonic structure, meta-structure, etc. However, the as-prepared material has disadvantages such as high cost, low yield, small area which seriously hinder the practical application of radiative cooling materials .
With the development of radiative cooling theory and the maturation of advanced manufacture techniques, the preparation methods of radiative cooling materials are becoming more and more diversified. Vacuum evaporation, micro-nano processing technology, direct coating, extrusion molding and electrospinning have been reported. Large area radiative cooling materials can be prepared at low cost, which further promotes the commercial application of radiative cooling technology.
This review summarizesresearch status of radiative cooling materials preparation, compares the advantages and disadvantages of different preparation methods. First, the common radiative cooling materials and forming methods are summarized; then the widely used preparation methods of radiative cooling materials are introduced and their characteristics are analyzed. After that the fabrication methods chosen by the researchers for specific materials or application scenarios are summarized. Finally current problems and future development perspectives of the preparation of radiative cooling materials are discussed.
Key words:  radiative cooling    vacuum evaporation    micro-nanofabrication    extrusion molding    direct coating
发布日期:  2022-02-10
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51772191)
通讯作者:  hanzhou_81@sjtu.edu.cn   
作者简介:  李振扬,2018年6月毕业于中南大学,获得工学学士学位。现为上海交通大学材料科学与工程学院硕士研究生,在周涵老师的指导下进行研究。目前主要研究领域为辐射冷却。
周涵,上海交通大学材料学院及金属基复合材料国家重点实验室教授、博士研究生导师。2010 年获得上海交通大学-美国加州大学戴维斯分校联合培养博士学位,2012—2013 年在日本国立物质材料研究所叶金花教授课题组从事博后工作,2013—2014 年在德国马普所胶体与界面研究所 Markus Antonietti 教授团队从事洪堡学者研究。主要研究方向为仿生材料与智能材料、超材料、热调控材料。
引用本文:    
李振扬, 王盼, 张海文, 周涵. 辐射冷却材料的制备方法综述[J]. 材料导报, 2022, 36(3): 20120012-6.
LI Zhenyang, WANG Pan, ZHANG Haiwen, ZHOU Han. Review on the Preparation Methods of Radiative Cooling Materials. Materials Reports, 2022, 36(3): 20120012-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120012  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20120012
1 Hossain M M, Gu M. Advanced Science, 2016, 3, 1500360.
2 Buddhiraju S, Santhanam P, Fan S. Proceedings of the National Academy of Sciences, 2018, 115, E3609.
3 Stark A K. National Science Review, 2017, 4, 789.
4 Zhang K, Monteiro M J, Jia Z. Polymer Chemistry, 2016, 7, 5589.
5 Vvedenskii V D, Ryazankin V P, Salishchev G S. Soviet Journal of Optical Technology, 1987, 54, 564.
6 Raman A P, Abou Anoma M, Zhu L, et al. Nature, 2014, 515, 540.
7 Kecebas M A, Menguc M P, Kosar A, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 198, 179.
8 Chen Z, Zhu L, Raman A, et al. Nature Communications, 2016, 7, 1.
9 Kou J L, Jurado Z, Chen Z, et al. ACS Photonics, 2017, 4, 626.
10 Calderon V S, Cavaleiro A, Carvalho S. Progress in Materials Science, 2016, 84, 158.
11 Hu M, Pei G, Wang Q, et al. Applied Energy, 2016, 179, 899.
12 Qu Y, Cai L, Luo H, et al. Optics Express, 2018, 26, 4279.
13 Herve P, Rambure N, Sadou A, et al. Cryogenics, 2008, 48, 463.
14 Harrison A, Walton M. Solar Energy, 1978, 20, 185.
15 Michell D, Biggs K. Applied Energy, 1979, 5, 263.
16 Orel B, Gunde M K, Krainer A. Solar Energy, 1993, 50, 477.
17 Bao H, Yan C, Wang B, et al. Solar Energy Materials and Solar Cells, 2017, 168, 78.
18 Huang Z, Ruan X. International Journal of Heat and Mass Transfer, 2017, 104, 890.
19 Chen Y, Mandal J, Li W, et al. Science Advances, 2020, 6, eaaz5413.
20 Mandal J, Fu Y, Overvig A C, et al. Science, 2018, 362, 315.
21 Mandal J, Jia M, Overvig A, et al. Joule, 2019, 3, 3088.
22 Fang F, Xu F. Nanomanufacturing and Metrology, 2018, 1, 4.
23 Zhu L, Raman A P, Fan S. Proceedings of the National Academy of Sciences, 2015, 112, 12282.
24 Zou C, Ren G, Hossain M M, et al. Advanced Optical Materials, 2017, 5, 1700460.
25 Hossain M M, Jia B, Gu M. Advanced Optical Materials, 2015, 3, 1047.
26 Sun K, Riedel C A, Wang Y, et al. ACS Photonics, 2018, 5, 495.
27 Prokof'ev V Y. Glass and Ceramics, 2011, 68, 11.
28 Cai L, Song A Y, Li W, et al. Advanced Materials, 2018, 30, 1802152.
29 Cai L, Peng Y, Xu J, et al. Joule, 2019, 3, 1478.
30 Peng Y, Chen J, Song A Y, et al. Nature Sustainability, 2018, 1, 105.
31 Lee J, Byeon J, Lee C. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7, 525.
32 Gusain A, Thankappan A, Thomas S. Journal of Materials Science, 2020, 55, 13490.
33 Zhai Y, Ma Y, David S N, et al. Science, 2017, 355, 1062.
34 Zhao D, Aili A, Zhai Y, et al. Joule, 2019, 3, 111.
35 Li T, Zhai Y, He S, et al. Science, 2019, 364, 760.
36 Zhang H, Ly K C, Liu X, et al. Proceedings of the National Academy of Sciences, 2020, 117, 14657.
37 Reneker D H, Chun I. Nanotechnology, 1996, 7, 216.
38 Wang X, Liu X, Li Z, et al. Advanced Functional Materials, 2020, 30, 1907562.
39 Li D, Liu X, Li W, et al. Nature Nanotechnology, DOI:10.1038/s41565-020-00800-4.
[1] 李培, 秦亮, 何红, 张亚军. 含SiO2/SiC可昼夜降温辐射冷却膜的制备与实验研究[J]. 材料导报, 2021, 35(14): 14185-14189.
[2] 任重, 黄兴元, 柳和生. 塑料微管气辅挤出成型实验与机理分析[J]. 材料导报, 2020, 34(20): 20193-20198.
[3] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed