Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22050122-7    https://doi.org/10.11896/cldb.22050122
  宇航材料 |
模拟月/火星壤的原位成型技术研究进展
刘琛1, 李勇2, 周文3, 吴宜勇1,*, 王岩4, 吴跃民4, 王芳1, 琚丹丹1, 闫继宏1
1 哈尔滨工业大学空间环境与物质科学研究院,哈尔滨 150001
2 哈尔滨工业大学材料科学与工程学院,哈尔滨 150001
3 中国航空工业空气动力研究院,哈尔滨 150001
4 北京空间飞行器总体设计部,北京 100094
In-situ Forming Technology of Lunar/Martian Soil Simulant
LIU Chen1, LI Yong2, ZHOU Wen3, WU Yiyong1,*, WANG Yan4, WU Yuemin4, WANG Fang1, JU Dandan1, YAN Jihong1
1 Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China
2 School of Materials Science and Technology, Harbin Institute of Technology, Harbin 150001, China
3 AVIC Aerodynamics Research Institute, Harbin 150001, China
4 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
下载:  全 文 ( PDF ) ( 4204KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 月/火矿物资源原位成型是太空原位制造技术的重要组成部分,也是建立外星基地等中长期任务的关键技术。月/火星壤成型方法主要分三大类:烧结成型、粘结成型和3D打印成型。从工艺上来讲,要尽可能采用太空中容易获取的资源作为成型所需能量和添加剂,以降低制造成本。从结构上来讲,大型结构件的快速成型和精细复杂结构成型是两个重要的研究趋势,用于满足外星活动的多场景需求。从性能上来讲,重点关注成型材料的力学性能和热物理性能,以满足承载和保温的需求。本文综述了国内外月/火星壤的主要成型技术,从原料获取、工艺流程、微观结构和性能等方面进行了系统的介绍,并归纳总结了各种成型方法的优缺点和发展趋势,旨在为外星资源原位利用这一重要研究课题的发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘琛
李勇
周文
吴宜勇
王岩
吴跃民
王芳
琚丹丹
闫继宏
关键词:  模拟月壤  模拟火星壤  原位成型技术  3D打印  烧结成型    
Abstract: In-situ forming technology of Lunar/Martian soil is an important part of in-situ resource utilization,and also the key technology of long-term alien base construction. The forming methods of Lunar/Martian soil are mainly divided into three categories, sintering, bonding and 3D prin-ting molding. In terms of forming process, the energy and additives utilized during forming should be accessed in space as easily as possible to reduce the manufacturing costs. In terms of structure, the rapid prototyping of large structural parts and the fine forming of complex structure are two important research trends, which could meet the needs of multi-scene human activities. In terms of properties, the mechanical and thermophysical properties were focused to meet the needs of bearing and thermal insulation. This paper systematically introduced the main forming technologies of lunar/Martian soil at home and abroad, including raw material acquisition, forming process, microstructure and properties. The advantages and disadvantages, as well as the development trend of various forming methods were summarized to provide reference for the development of in-situ utilization of space resources.
Key words:  lunar soil simulant    Martian soil simulant    in-situ forming technology    3D printing    sintering
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  V11  
通讯作者:  * wuyiyong@hit.edu.cn   
作者简介:  刘琛,哈尔滨工业大学空间环境与物质科学研究院副研究员、博士研究生导师。2009年本科毕业于郑州大学材料科学与工程专业,2011年硕士毕业于哈尔滨工业大学材料学,2015年博士毕业于哈尔滨工业大学材料学后留校工作至今,目前主要从事高温陶瓷基复合材料、火星尘暴环境模拟和火星壤原位制造技术研究。相关研究成果发表在CarbonJournal of Colloid and Interface ScienceJournal of the European Ceramics Society等国际知名期刊上。
吴宜勇,哈尔滨工业大学空间环境与物质科学研究院教授、博士研究生导师,材料科学与工程学院空间环境材料行为及评价技术国家级重点实验室副主任。1989年于哈尔滨工业大学金属材料及工艺系获学士学位,1989年至1995年就读于哈尔滨工业大学材料科学与工程学院, 1992年直攻博,1995年获博士学位。1995年到哈尔滨工业大学工作至今,目前主要从事空间太阳电池环境效应与损伤机理、聚合物材料原子氧侵蚀机理及防护、材料辐致电导效应、原子层沉积技术等方面的研究。在Journal of Applied PhysicsSolar Energy Materials & Solar CellsPolymer Degradation and StabilityThin Solid Films等国际知名杂志发表学术论文100余篇,获授权专利5项。
引用本文:    
刘琛, 李勇, 周文, 吴宜勇, 王岩, 吴跃民, 王芳, 琚丹丹, 闫继宏. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报, 2022, 36(22): 22050122-7.
LIU Chen, LI Yong, ZHOU Wen, WU Yiyong, WANG Yan, WU Yuemin, WANG Fang, JU Dandan, YAN Jihong. In-situ Forming Technology of Lunar/Martian Soil Simulant. Materials Reports, 2022, 36(22): 22050122-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050122  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22050122
1 Lim S, Anand M, Rousek T. In: 46th Lunar and Planetary Science Conference. The Woodlands Texas, 2015, pp.1076.
2 Bhardwaj A, Jones S Z, Kalantar N, et al.Journal of Manufacturing Science and Engineering, 2019, 141(9), 091010.
3 Wang G, Liu Y F, Cheng T J, et al.Chinese Journal of Space Science, 2016, 36(4), 571(in Chinese).
王功, 刘亦飞, 程天锦,等.空间科学学报, 2016, 36(4), 571.
4 Scott A N, Oze C, Tang Y, et al.Acta Astronautica, 2017, 131, 45.
5 Moses R W, Bushnell D M. U.S. patent, NF1676L-20756, 2016.
6 Joshi S C, Sheikh A A.Virtual and Physical Prototyping,2015,10(4),175.
7 Mueller R P, Sibille L, Hintze P E, et al. In: Earth and Space 2014. St, Louis, MO, 2014, pp.394.
8 Mueller R P, King R H.AIP Conference Proceedings,2008,969(1),237.
9 Wang Z H, Liu Y M, Tian D B, et al.Spacecraft Environment Enginee-ring, 2018, 35(3), 298(in Chinese).
王志浩, 刘宇明, 田东波, 等.航天器环境工程, 2018, 35(3), 298.
10 Song L,Xu J,Tang H,et al.Acta Mineralogica Sinica, 2020, 40(1), 47(in Chinese).
宋蕾, 徐佼, 唐红, 等.矿物学报, 2020, 40(1), 47.
11 McKay D S, Carter J L, Boles W W, et al.In: Engineering, Construction, and operations in Space IV(U. S.).Albuquerque, New Mexico,1994, pp.857.
12 Weiblen P W, Murawa M J, Reid K J. In: Engineering, Construction, and Operations in Space II(U. S.).Albuquerque, New Mexico,1990, pp.98.
13 Kanamori H, Udagawa S, Yoshida T, et al. In: Sixth ASCE Specialty Conference and Exposition on Engineering, Construction and Operations in Space. New Mexico, United States, 1998, pp.462.
14 Gouache T P, Patel N, Brunskill C, et al.Planetary and Space Science, 2011, 59(8), 779.
15 Spray J G.Planetary and Space Science, 2010, 58(14-15), 1771.
16 Allen C C, Jager K M, Morris R V, et al. Eos, Transactions American Geophysical Union, 1998, 79(34), 405.
17 Scott G, Saaj C. In: AIAA SPACE 2009 Conference & Exposition. California, 2009, pp.6468.
18 Peters G H, Abbey W, Bearman G H, et al.Icarus,2008,197(2),470.
19 Xue L.Engineering of martian soil simulant and in situ identification of terrain parameter for planetary rovers. Ph.D. Thesis, Ji Lin University, China,2017(in Chinese).
薛龙. 工程用模拟火星壤研制与地面力学参数就位估计研究. 博士学位论文,吉林大学, 2017.
20 Zeng X J, Li X Y, Wang S J, et al.Earth, Planets and Space, 2015, 67, 72.
21 Taylor L A, Meek T T.Journal of Aerospace Engineering,2005,18(3),188.
22 Allan S M, Merritt B J, Griffin B F, et al.Journal of Aerospace Enginee-ring, 2013, 26(4), 874.
23 Faierson E J, Logan K V, Stewart B K, et al. Acta Astronautica, 2010, 67(1-2), 38.
24 Song L, Xu J, Fan S Q, et al.Ceramics International, 2019, 45, 3627.
25 Lyu C. Experimental study on vacuum sintering performance of simulated alien soil and laser additive manufacturing. Master's Thesis, Harbin Institute of Technology, China, 2019(in Chinese).
吕晨. 模拟外星壤的真空烧结性能与激光增材制造试验研究. 硕士学位论文, 哈尔滨工业大学, 2019.
26 Thomas G, Amits B.Materials Letters, 2015, 143, 276.
27 Zhang X, Khedmati M, Kim Y R, et al.Journal of the American Ceramics Society, 2019, 103(2), 899.
28 David K,Franz K,Andrea Z,et al.PLoS ONE,2018,13(10),e0204025.
29 Toutanji H, Glenn-Loper B, Schrayshuen B. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2005, pp.11427.
30 Toutanji H, Evans S, Grugel R N.Construction and Building Materials, 2011, 29, 444.
31 Grugel R N, Toutanji H.Advances in Space Research,2008,41(1),103.
32 Davidovits J. Journal of Thermal Analysis and Calorimetry,1991,37,1633.
33 Ceccanti F, Dini E, Kestelier X D, et al. In: 61st International Astronautical Congress. Prague, CZ, 2010, pp.IAC-10-D3.3.5.
34 Benvenuti S, Ceccanti F, Kestelier X D.Nexus Network Journal, 2013, 15, 285.
35 Cesaretti G, Dini E, Kestelier X D, et al.Acta Astronaut,2014,93,430.
36 Chow B J, Chen T, Zhong Y, et al.Scientific Reports, 2017, 7, 1151.
37 Ng S W, Dritsas S, Fernandez J G. PLoS ONE,2020,15(9),e0238606.
38 Roberts A D, Whittall D R, Breitling R, et al.Materials Today Bio, 2021,12, 100136.
39 Liu M,Tang W Z,Duan W Y,et al.Ceramics International,2019,45,5829.
40 Jakus A E, Koube K D, Geisendorfer N R, et al.Scientific Reports, 2017, 7, 44931.
41 Taylor S L, Jakus A E, Koube K D, et al.Acta Astronaut,2018,143,1.
42 Balla V K, Roberson L B, O'Connor G W, et al.Rapid Prototyping Journal, 2011, 18(6), 451.
43 Fateri M, Khosravi M.Concepts and Approaches for Mars Exploration(U.S.), 2012,1679, 4368.
44 Fateri M, Gebhardt A.International Journal of Applied Ceramic Technology, 2015, 12(1), 46.
45 Goulas A.Investigating the additive manufacture of extra-terrestrial mate-rial simulants. Ph.D.Thesis, Loughborough University, UK, 2018.
46 Goulasa A, Binner J G P, Harris R A, et al.Applied Materials Today, 2017, 6, 54.
47 Goulas A, Friel R J.Rapid Prototyping Journal, 2016, 22, 864.
48 Goulas, A, Binner J G P, Engstrom D S, et al.Proceedings of the Institution of Mechanical Engineers Part L- Journal of Materials-Design and Applications. 2019, 233(8), 1629.
49 McLemore C A, Fikes J C, Darby C A. In: AIAA SPACE 2008 Confe-rence & Exposition. California, 2008.
50 Zheng W, Qiao G F.Advances in Space Research, 2020, 65, 2303.
[1] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[2] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[3] 李俊生, 李端, 李学超, 高世涛, 王衍飞, 万帆, 刘荣军. 3D打印天线罩技术研究进展[J]. 材料导报, 2022, 36(22): 22050328-10.
[4] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[5] 张蕾, 李博, 高阳. 压阻式柔性应变传感器研究进展[J]. 材料导报, 2022, 36(19): 20120243-11.
[6] 许万卫, 白雪, 马健, 刘帅. 超声检测在金属3D打印中的应用研究进展[J]. 材料导报, 2022, 36(18): 21030217-10.
[7] 张科, 叶锦明, 刘享华. 光固化3D打印在复杂裂隙岩体研究中的探索[J]. 材料导报, 2022, 36(17): 20090297-6.
[8] 秦若森, 孙守政, 韩振宇, 张鹏, 富宏亚. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17): 21010246-9.
[9] 刘通, 诸葛祥群, 蓝嘉昕, 耿继业, 罗志虹, 李义兵, 罗鲲. 聚氨酯基压敏材料3D打印结合GaInSn液态金属导线制作柔性压力传感器的研究[J]. 材料导报, 2022, 36(15): 21030297-5.
[10] 王晓晶, 涂龙, 罗晓亮, 王浩旭, 胡振峰, 梁秀兵. 聚合物基材料4D打印研究进展[J]. 材料导报, 2022, 36(14): 20100265-15.
[11] 王志勇, 蔡志祥, 刘国承, 孙智龙, 张铁. HAP-TCP复合生物陶瓷浆料的激光3D打印及性能研究[J]. 材料导报, 2021, 35(Z1): 104-107.
[12] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[13] 耿继业, 蓝嘉昕, 刘通, 诸葛祥群, 罗志虹, 李义兵, 罗鲲. 3D打印聚氨酯微流道封装镓基液态金属柔性导线及其性能[J]. 材料导报, 2021, 35(20): 20040-20044.
[14] 杨兆哲, 孔振武, 吴国民, 王思群, 谢延军, 冯鑫浩. 3D打印聚合物纳米复合材料的研究进展[J]. 材料导报, 2021, 35(13): 13177-13185.
[15] 白刚, 王里, 王芳, 程新睿. 3D打印UHPC的制备和力学性能试验研究[J]. 材料导报, 2021, 35(12): 12063-12069.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed