Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22050099-6    https://doi.org/10.11896/cldb.22050099
  宇航材料 |
离子推力器栅极材料的发展现状
魏贺冉, 闫联生*, 孙建涛
西安航天复合材料研究所,西安 710025
Development Status of Grid Materials for Ion Thrusters
WEI Heran, YAN Liansheng*, SUN Jiantao
Xi'an Aerospace Composites Research Institute, Xi'an 710025, China
下载:  全 文 ( PDF ) ( 2453KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 离子推力器是一种应用广泛的电推力器。栅极在离子推力器中用于将离子引出并加速产生推力,是决定离子推力器的性能以及可靠性的关键组件。近年来,用于制备栅极的材料由钼等金属材料过渡到碳基材料,尤其是C/C复合材料具有更优的热稳定性与耐离子溅射性能,是大承载、长寿命、高稳定性离子推力器理想的栅极候选材料。一些国家已开展C/C复合材料栅极研制并实现星际飞行,而我国栅极材料仍采用金属钼,C/C复合材料栅极工程应用仍处于空白。本文主要总结栅极材料的发展现状,分析各种栅极材料的优缺点,并探讨各国C/C复合材料栅极的制造技术。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏贺冉
闫联生
孙建涛
关键词:  离子推力器  栅极组件  C/C复合材料  耐溅射    
Abstract: Ion thruster is a widely used electric thruster. The grid is used in ion thrusters to draw out ions and accelerate them to generate thrust, and it is a key component that determines the performance as well as reliability of the ion thruster. Recently, the materials used to prepare the grid have been transitioned from metal materials such as molybdenum to carbon-based materials, especially C/C composite materials with better thermal stability and resistance to ion sputtering, which are ideal grid candidates for large load-bearing, long-life and high-stability ion thrusters. A few countries have developed C/C composite grids and achieved interstellar flight. In fact, China still uses molybdenum as the major grid material and the application of C/C composite grids engineering is still blank. This review mainly summarizes the development status of grid materials, analyzes the advantages and disadvantages of various grid materials, and discusses the manufacturing technology of C/C composite grids in various countries.
Key words:  ion thruster    grid assembly    C/C composite    sputtering resistance
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  V439.4  
通讯作者:  * yanls1968@126.com   
作者简介:  魏贺冉,2020 年毕业于西北大学物理学院,获得理学学士学位。现为西安航天复合材料研究所硕士研究生,在闫联生研究员的指导下进行研究。目前主要研究领域为高温材料及制造。
闫联生,研究员,1992年获得吉林大学学士学位,1995年获得航天动力技术研究院硕士学位,2008年获得西北工业大学博士学位。现任中国航天科技集团公司第四研究院第四十三研究所研发中心技术总师、科技委常委,集团公司工艺技术带头人。主要从事陶瓷基高温复合材料基础理论与应用研究,获得第一发明人授权专利12项。以第一作者发表论文40余篇,其中被EI收录10篇、SCI收录5篇。
引用本文:    
魏贺冉, 闫联生, 孙建涛. 离子推力器栅极材料的发展现状[J]. 材料导报, 2022, 36(22): 22050099-6.
WEI Heran, YAN Liansheng, SUN Jiantao. Development Status of Grid Materials for Ion Thrusters. Materials Reports, 2022, 36(22): 22050099-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050099  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22050099
1 Zheng M F, Jiang H C, Zhang T P, et al. Vacuum and Cryogenics, 2011, 17(2), 96(in Chinese).
郑茂繁, 江豪成, 张天平, 等. 真空与低温, 2011, 17(2), 96.
2 Meserole J. In: 30th Joint Propulsion Conference and Exhibit. Indianapolis, 1994, pp.3119.
3 Snyder J, Brophy J, Anderson J. In: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson, 2005, pp.4394.
4 Haag T. In: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson, 2005, pp.4408.
5 Zheng M F, Jiang H C, Zhang T P, et al. Spacecraft Environment Engineering, 2010, 27(6), 756(in Chinese).
郑茂繁, 江豪成, 张天平, 等. 航天器环境工程, 2010, 27(6), 756.
6 Walker R, Bramanti C, Sutherland O, et al. In: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento, 2006, pp.4669.
7 Zhang T P, Geng H, Zhang X E, et al. Aerospace Shanghai, 2019, 36(6), 88(in Chinese).
张天平, 耿海, 张雪儿, 等. 上海航天, 2019, 36(6), 88.
8 Chen Y. Structural design and mechanical analysis on C/C grids for ion thruster. Master's Thesis, Shanghai University, China, 2017(in Chinese).
陈玥. 离子推进C/C复合材料栅极的设计与力学分析. 硕士学位论文, 上海大学, 2017.
9 Li H, Hu P, Xing H R, et al. Journal of Functional Materials, 2020, 51(10), 10044(in Chinese).
李辉, 胡平, 邢海瑞, 等. 功能材料, 2020, 51(10), 10044.
10 Zheng M F, Huang Y J, Tang F J, et al. Vacuum and Cryogenics, 2015, 21(6), 334(in Chinese).
郑茂繁, 黄永杰, 唐福俊, 等. 真空与低温, 2015, 21(6), 334.
11 Hu G J, Li J, Liu B L. Chinese Space Science and Technology, 2016, 36(1), 85(in Chinese).
胡帼杰, 李健, 刘百麟. 中国空间科学技术, 2016, 36(1), 85.
12 Chen C, Yin H Q, Qu X H, et al. Rare metal Materials and Enginee-ring, 2007(7), 1237(in Chinese).
陈程, 尹海清, 曲选辉, 等. 稀有金属材料与工程, 2007(7), 1237.
13 Garner C, Brophy J. In: 28th Joint Propulsion Conference and Exhibit. Nashville, 1992, pp.3149.
14 Chen L Y, Song R W, Qiu J W. Journal of Rocket Propulsion, 2005(4), 30(in Chinese).
陈琳英, 宋仁旺, 邱家稳. 火箭推进, 2005(4), 30.
15 Meckel N, Polaha J, Juhlin N. In: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, 2004, pp.3629.
16 Foster J, Haag T, Kamhawi H, et al. In: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, 2004, pp.3812.
17 De Pano M, Hart S, Hanna A, et al. In: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, 2004, pp.3615.
18 Williams J D, Johnson M L, Williams D D. In: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, 2004, pp.3788.
19 Patterson M, Domonkos M, Foster J, et al. In: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, 2000, pp.3810.
20 Guo D Z, Gu Z, Zheng M F, et al. Vacuum and Cryogenics, 2016, 22(3), 125(in Chinese).
郭德洲, 顾左, 郑茂繁, 等. 真空与低温, 2016, 22(3), 125.
21 Goebel D M. In: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Confe-rence & Exhibit. Tucson, 2005, pp.1603.
22 Kolasinski R D, Polk J E, Goebel D, et al. Applied Surface Science, 2008, 254(8), 2506.
23 Akhmetzhanov R V, Balashov V V, Bogachev Y A, et al. Thermal Engineering, 2018, 65(13), 986.
24 Kitamura S, Hayakawa Y, Kasai Y, et al. In: 25th International Electric Propulsion Conference. Cleveland, 1997, pp.93.
25 Beatty J, Snyder J, Shih W. In: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson, 2005, pp.4411.
26 Tartz M, Manova D, Neumann H, et al. In: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson, 2005, pp.4414.
27 Snyder J. In: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Confe-rence and Exhibit. Huntsville, 2003, pp.4715.
28 Funaki I, Kuninaka H, Toki K, et al. Journal of Propulsion and Power, 2002, 18(1), 169.
29 Hedges D E, Meserole J S. Journal of Propulsion and Power, 1994, 10(2), 255.
30 Mueller J, Brown D K, Garner C E, et al. In: 23rd International Electric Propulsion Conference. Seattle, 1993, pp.112.
31 Kitamura S, Miyazaki K, Hayakawa Y, et al. In: 24th International Electric Propulsion Conference. Moscow, 1995, pp.93.
32 Chu Q C, Yu G, Lu G Q, et al. Chinese Journal of Lasers, 2011, 38(6), 83(in Chinese).
褚庆臣, 虞钢, 卢国权, 等. 中国激光, 2011, 38(6), 83.
33 Guo D Z, Gu Z, Kong L X. Chinese Journal of Vacuum Science and Technology, 2016, 36(8), 891(in Chinese).
郭德洲, 顾左, 孔令轩. 真空科学与技术学报, 2016, 36(8), 891.
34 Chen Y, Li K, Peng Y Q, et al. Journal of Shanghai University(Natural Science), 2019, 25(2), 235(in Chinese).
陈玥, 李凯, 彭雨晴, 等. 上海大学学报(自然科学版), 2019, 25(2), 235.
35 顾左, 郭德洲, 郭宁, 等. 中国专利,CN108866801, 2018.
36 张水强, 黄洁纯, 陈玥. 中国专利,CN111646814A, 2020.
37 江汛, 易增博, 张鸿翔, 等. 中国专利,CN113773102A, 2021.
[1] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[2] 樊凯, 卢雪峰, 吕凯明, 钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
[3] 解惠贞,孙建涛,何轩宇,薛朋飞,秦淑颖. 密度对C/C复合材料热力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 268-271.
[4] 李妙玲,陈智勇,赵红霞. C/C复合材料的旋转偏振成像方法[J]. 《材料导报》期刊社, 2018, 32(10): 1678-1682.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed