Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21110276-7    https://doi.org/10.11896/cldb.21110276
  无机非金属及其复合材料 |
基于打印参数影响的3D打印混凝土力学性能试验研究
刘超1,2,*, 王有强1, 刘化威1, 张荣飞1
1 西安建筑科技大学土木工程学院,西安 710055
2 西安建筑科技大学理学院,西安 710055
Experimental Study on the Mechanical Properties of 3D Printed Concrete Based on the Influence of Printing Parameters
LIU Chao1,2,*, WANG Youqiang1, LIU Huawei1, ZHANG Rongfei1
1 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 23750KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作制备了具有良好工作性能的3D打印混凝土,研究了喷头尺寸、打印路径两类打印参数对试件抗压强度、抗弯强度、微观和细观结构的影响,重点分析了其受力开裂的破坏机理,并且基于孔隙结构参数提出了抗压强度预测模型。结果表明:随着喷头尺寸由20 mm增大至40 mm,3D打印混凝土的可建造性增强,打印试件的力学强度提升7.5%~31.6%,孔隙率和缺陷数量下降;正交路径B的打印试件孔隙率与平行路径A的相近,但其力学强度提升10.8%~46.7%。3D打印混凝土最薄弱界面是打印层间界面;打印试件开裂破坏时有三类破坏形态出现;建立的3D打印混凝土抗压强度预测模型可为评估不同打印参数下3D打印混凝土的抗压强度提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘超
王有强
刘化威
张荣飞
关键词:  3D打印混凝土  打印参数  力学强度  孔隙率  破坏机理    
Abstract: The experiment prepared 3D printed concrete with better workability. The influence of two printing parameters of printhead size and printing path on the compressive strength, flexural strength, micro and meso structure of the specimen were studied, and the failure mechanism of its stress cracking was analyzed. The compressive strength prediction model was proposed based on the pore structure parameters. The results showed that as the size of the printhead increased from 20 mm to 40 mm, the constructability of 3D printed concrete was enhanced, the mechanical strength of the printed specimen was increased by 7.5%—31.6%, the porosity and the number of defects were decreased. The porosity of the printed specimen of the orthogonal path B was similar to that of the parallel path A, but its mechanical strength was increased by 10.8%—46.7%. The weakest surface of 3D printed concrete was the interface between the printed layers. When the printed specimen was cracked and damaged, there were three types of failure modes. The compressive strength prediction model for 3D printed concrete was established to provide a theoretical reference for evaluating the compressive strength of 3D printed concrete under different printing parameters.
Key words:  3D printed concrete    printed parameter    mechanical strength    porosity    failure mechanism
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TU528.45  
基金资助: “十三五”国家重点研发计划(2019YFC1907105);国家自然科学基金(51878546;52178251);陕西省杰出青年科学基金项目(2020JC-46);陕西省重点研发计划项目(2020SF-392);榆林市产学研科技计划项目(CXY-2020-062);陕西省创新人才推进计划(2018KJXX-056)
通讯作者:  * 刘超,西安建筑科技大学土木工程学院、理学院教授,博士研究生导师。2006年南京工业大学土木工程专业学士毕业,2008年西安建筑科技大学工程力学专业硕士毕业后在本校工作至今,2012年西安建筑科技大学结构工程专业博士毕业。目前主要从事建筑3D打印智能建造、低碳环保型混凝土、再生建筑/工业材料及其结构性能、生物质智能混凝土等智能建造和大宗固废资源化领域的研究。授权国家专利22项,其中发明专利15项、实用新型专利7项。在国内外期刊上发表学术论文70余篇,其中国际顶级SCI、ESI热点论文、ESI高被引论文、中文行业权威期刊论文40余篇,出版学术论著一部(Elsevier)。chaoliu@xauat.edu.cn   
引用本文:    
刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
LIU Chao, WANG Youqiang, LIU Huawei, ZHANG Rongfei. Experimental Study on the Mechanical Properties of 3D Printed Concrete Based on the Influence of Printing Parameters. Materials Reports, 2023, 37(1): 21110276-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110276  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21110276
1 Zhu B R, Pan J L, Zhou Z X, et al. Materials Reports A:Review Papers, 2018, 32(12), 4150(in Chinese).
朱彬荣, 潘金龙, 周震鑫, 等. 材料导报:综述篇, 2018, 32(12), 4150.
2 Xiao J Z, Zou S, Yu Y, et al. Journal of Building Engineering, 2020, 32, 101779.
3 Sun X Y, Tang G, Wang H L, et al. Journal of Zhejiang University(Engineering Science), 2020, 54(11), 2085(in Chinese).
孙晓燕, 唐归, 王海龙, 等. 浙江大学学报(工学版), 2020, 54(11), 2085.
4 Wangler T, Roussel N, Bos F P, et al. Cement and Concrete Research, 2019, 123, 105780.
5 Alkhalidi A, Hatuqay D. Journal of Building Engineering, 2020, 30, 101286.
6 Ma G W, Li Z J, Wang L. Construction and Building Materials, 2018, 162, 613.
7 Sun X Y, Le K D, Wang H L, et al. Journal of Building Materials. 2020, 23(6), 1313(in Chinese).
孙晓燕, 乐凯笛, 王海龙, 等. 建筑材料学报, 2020, 23(6), 1313.
8 Paul S C, Tay Y W D, Panda B, et al. Archives of Civil and Mechanical Engineering, 2018, 18(1), 311.
9 Murcia D H, Genedy M, Taha M M R. Construction and Building Materials, 2020, 262, 120559.
10 Ma G W, Chai Y L, Wang L, et al. Journal of Experimental Mechanics, 2020, 35(1), 58(in Chinese).
马国伟, 柴艳龙, 王里, 等. 实验力学, 2020, 35(1), 58.
11 Geert D S, Karel L, Viktor M, et al. Cement and Concrete Research, 2018, 112, 25.
12 Panda B, Paul S C, Mohamed N A N, et al. Measurement, 2018, 113, 108.
13 Ding T, Xiao J Z, Zou S, et al. Composite Structures, 2020, 254, 112808.
14 Sanjayan J G, Nazari A, Nematollahi B, et al. 3D concrete printing technology, Elsevier, Butterworth-Heinemann, 2019, pp. 333.
15 Wolfs R J M, Bos F P, Salet T A M. Cement and Concrete Research, 2019, 119, 132.
16 GB/T 2419-2005. Test method for fluidity of cement mortar, Standards Press of China, China, 2005(in Chinese).
GB/T 2419-2005. 水泥砂浆流动度测定方法, 中国标准出版社, 2005.
17 GB/T 50080-2002. Standard for test method of performance on ordinary fresh concrete, China Architecture & Building Press, China, 2002(in Chinese).
GB/T 50080-2002. 普通混凝土拌合物性能试验方法标准, 中国建筑工业出版社, 2003.
18 GB/T 50081-2019. Standard for test method of concrete physical and mechanical properties, China Architecture & Building Press, China, 2003(in Chinese).
GB/T 50081-2019. 混凝土物理力学性能试验方法标准, 中国建筑工业出版社, 2019.
19 Zhao Y, Liu W S, Wang H, et al. Materials Reports, 2020, 34(S2), 1217(in Chinese).
赵颖, 刘维胜, 王欢, 等. 材料导报, 2020, 34(S2), 1217.
20 Wang L, Wang B L, Bai G, et al. Journal of Experimental Mechanics, 2020, 35(2), 243(in Chinese).
王里, 王伯林, 白刚, 等. 实验力学, 2020, 35(2), 243.
21 Liu C, Zhang R F, Liu H W, et al. Construction and Building Materials, 2022, 314, 125572.
22 Luping T. Cement and Concrete Research, 1986, 16(1), 87.
23 Kumar R, Bhattacharjee B. Cement and Concrete Research, 2003, 33(1), 155.
[1] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[2] 姚维, 郑伯坤, 邱景平, 黄腾龙, 尹旭岩. 外加剂对膨胀充填材料性能的影响[J]. 材料导报, 2022, 36(Z1): 20070045-5.
[3] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[4] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[5] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[6] 袁信翊, 刘杨, 李明轩, 陆晓峰, 朱晓磊. 基于打印参数的选区激光熔化构件内部形貌调控研究现状[J]. 材料导报, 2022, 36(21): 20080263-9.
[7] 崔天龙, 王里, 马国伟, 李之建, 白明科. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 20120078-7.
[8] 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 21030274-6.
[9] 代楠, 张育新, 李凯霖, 刘晓英, 董必钦, 封丽, 贾兴文. 硅藻土在胶凝材料领域的应用进展[J]. 材料导报, 2022, 36(14): 21030125-9.
[10] 王挺, 高业栋, 恽迪, 王冠, 周毅, 张坤, 郭子萱, 吕亮亮. 金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发[J]. 材料导报, 2022, 36(11): 21040054-5.
[11] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[12] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[13] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[14] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[15] 曹忠亮, 郭登科, 林国军, 韩振宇, 富宏亚. 热塑性纤维铺放构件的层间剪切强度及孔隙率[J]. 材料导报, 2021, 35(18): 18205-18209.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed