Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 21030125-9    https://doi.org/10.11896/cldb.21030125
  无机非金属及其复合材料 |
硅藻土在胶凝材料领域的应用进展
代楠1, 张育新1, 李凯霖1, 刘晓英2, 董必钦3, 封丽4, 贾兴文1
1 重庆大学材料科学与工程学院,重庆 400030
2 重庆工商大学环境与资源学院,重庆 400067
3 深圳大学土木与交通工程学院,广东 深圳 518061
4 重庆市生态环境科学研究院,重庆 401147
Application of Diatomite in Cementitious Materials
DAI Nan1, ZHANG Yuxin1, LI Kailin1, LIU Xiaoying2, DONG Biqin3, FENG Li4, JIA Xingwen1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
2 School of Environment and Resources, Chongqing Industrial and Commercial University, Chongqing 400067, China
3 School of Civil and Traffic Engineering, Shenzhen University, Shenzhen 518061, Guangdong, China
4 Chongqing Institute of Ecological Environment Science, Chongqing 401147, China
下载:  全 文 ( PDF ) ( 2643KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅藻土是死亡的硅藻细胞壁矿物质经地质作用沉积形成的矿物。硅藻土(主要成分为SiO2)是一种来源广泛、性质稳定、价格低廉的天然无机非金属矿产资源,其应用前景十分广阔。由于独特的微孔结构和成分组成,近年来硅藻土开始逐渐被应用到水泥基胶凝材料中,以期达到改善水泥基材料性能的目的。目前,硅藻土在水泥基材料中的用途可根据添加形式分为三类:以矿物掺合料添加、以纳米材料形式添加和用作轻质骨料。采用的添加形式不同,硅藻土对水泥基材料性能的影响也各不相同。与此同时,硅藻土在其他胶凝材料(如沥青、地质聚合物等)中也显示出其应用潜力。
本文根据近年来国内外在硅藻土领域的研究现状,总结了硅藻土材料在水泥基材料中的用途,探讨了用硅藻土替代混凝土中不同组分对胶凝材料性能的影响;归纳了硅藻土在其他胶凝材料制备中的作用,并对其在水泥胶凝材料中的应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代楠
张育新
李凯霖
刘晓英
董必钦
封丽
贾兴文
关键词:  硅藻土  水泥胶凝材料  孔隙率  力学性能    
Abstract: Diatomite is a mineral formed by the deposition of dead diatom cell wall minerals by geological processes, and the main composition of which is SiO2. Diatomite is a kind of natural inorganic mineral resource with wide source, stable properties and low price, so it has broad application prospect. Due to its unique microporous structure and composition, diatomite has been gradually applied to cement-based materials in order to achieve the purpose of improving the performance of cement-based materials in recent years. At present, the diatomite in cement-based materials can be divided into three kinds on the basis of the different uses, namely, as mineral admixtures, as nanomaterials and as lightweight aggregate. In the different uses, the impact of diatomite on cement-based materials is not the same. Furthermore, diatomite has shown its application potential in other cementitious materials like geopolymer and asphalt.
In this paper, the application of diatomite in cement-based materials is summarized based on the research status of diatomite at home and abroad in recent years, and the effect of diatomite used as a substitute for different components in concrete on the properties of cementitious materials is discussed. This paper also summarizes the role of diatomite in the preparation of different cementitious materials, and finally prospects its application in cement cementitious materials.
Key words:  diatomite    cement cementitious material    porosity    mechanical property
发布日期:  2022-07-26
ZTFLH:  TU50  
基金资助: 国家自然科学基金(U180120042)
通讯作者:  zhangyuxin@cqu.edu.cn   
作者简介:  代楠,2020年6月毕业于长安大学,获得工学硕士学位。现为重庆大学材料科学与工程学院博士研究生,在张育新教授的指导下进行研究。目前主要研究领域为硅藻土复合材料制备与其在胶凝材料中的应用。
张育新,重庆大学教授,2000 年本科毕业于天津大学,2008 年博士毕业于新加坡国立大学,师从曾华淳教授(全球Top100化学家)。主要研究多维度和多组分的可控自组装纳米技术并将其应用于超级电容器/清洁能源/环保等应用,尤其是硅藻土纳米复合结构。获2020年度科睿唯安“全球高被引科学家”称号。目前已发表高水平论文250余篇。
引用本文:    
代楠, 张育新, 李凯霖, 刘晓英, 董必钦, 封丽, 贾兴文. 硅藻土在胶凝材料领域的应用进展[J]. 材料导报, 2022, 36(14): 21030125-9.
DAI Nan, ZHANG Yuxin, LI Kailin, LIU Xiaoying, DONG Biqin, FENG Li, JIA Xingwen. Application of Diatomite in Cementitious Materials. Materials Reports, 2022, 36(14): 21030125-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030125  或          http://www.mater-rep.com/CN/Y2022/V36/I14/21030125
1 Tommasi E D, Gielis J, Rogato A. Marine Genomics, 2017, 35, 1.
2 Uthappa U T,Brahmkhatri V, Sriram G, et al. Journal of Controlled Release, 2018, 281, 70.
3 Lv P, Liu C, Rao Z. Renewable and Sustainable Energy Reviews, 2017, 68,707.
4 Martinovic S, Vlahovic M, Boljanac T, et al. National Journal of Mineral Processing, 2006, 80(2), 255.
5 Yang Y, Zhang J, Yang W, et al. Applied Surface Science, 2003, 206(1), 20.
6 Khraisheh M A M, Alg-Houti M S. Adsorption, 2005, 11(5-6), 547.
7 Jiang D,Yuan Y,Wu J, et al. Materials Reports A: Review Papers, 2019, 33(5),1483(in Chinese).
姜德彬, 袁云松, 吴俊书,等. 材料导报:综述篇, 2019, 33(5),1483.
8 Yang Z. China Building Materials Science and Technology, 2014, 23(2),18(in Chinese).
杨哲斌.中国建材科技, 2014, 23(2),18.
9 Fragoulis D, Stamatakis M G, Papageorgiou D, et al. Cement and Concrete Composites, 2005, 27(2), 205.
10 Yılmaz B, Ediz N. Cement and Concrete Composites, 2008, 30(3), 202.
11 Yilmaz B. Advances in Cement Research, 2008, 20(1), 13.
12 Zhang L, Zhang Y, Rong H. Materials Reports B: Research Papers, 2016, 30(8), 120(in Chinese).
张磊, 张亚楠, 荣辉, 等. 材料导报:研究篇, 2016, 30(8), 120.
13 Li J, Zhang W,Li C, et al. Journal of Cleaner Production, 2019, 223, 662.
14 Ahmadi Z, Esmaeili J, Kasaei J, et al. Sustainable Materials and Tech-nologies, 2018, 16: 47.
15 Pokorny J, Pavlíková M, Medveá I, et al. In: International Conference of Numerical Analysis and Applied Mathematics. Rhodes, 2016,pp.28007.
16 Xiao L. In: The 7th National Commercial Mortar Conference. Tianjin, 2017, pp.163.
17 Jiang F, Shi Y, Zhang H. Materials Reports B: Research Papers, 2018, 32(10),3541(in Chinese).
姜丰, 史亚龙, 张洪恩, 等. 材料导报:研究篇, 2018, 32(10), 3541.
18 Hasanzadeh B, Sun Z. Journal of Building Materials and Structures, 2019, 5(2), 197.
19 Hasan M, Muyasir A, Saidi T, et al. Defect and Diffusion Forum, 2020, 402, 7.
20 Xiao L, Liu X. New Building Materials, 2019, 46(9), 145(in Chinese).
肖力光, 刘喜旭. 新型建筑材料,2019,46(9),145.
21 Wu Z, Wang X, Lu P, et al. Bulletin of the Chinese Ceramic Society, 2015,34(12),3586(in Chinese).
吴正光, 王修焱, 卢佩霞, 等. 硅酸盐通报,2015,34(12),3586.
22 Hu W, Huang W, Qin H. Industrial Construction, 2014, 44(10), 113(in Chinese).
胡维新, 黄伟, 秦鸿根.工业建筑,2014,44(10),113.
23 Kastis D, Kakali G,Tsivilis S, et al. Cement and Concrete Research, 2006, 36(10), 1821.
24 Wei Y, Meng Y, Sun Q. Applied Mechanics and Materials,2012, 1498, 2690.
25 Xiao L, Zhao Z, Li R B, et al. Key Engineering Materials, 2012, 517, 371.
26 Krajči Ł, Kuliffayová M,Janotka I. Procedia Engineering, 2013, 65, 7.
27 Žižková N, Drochytka R. Advanced Materials Research, 2013, 687,266.
28 Da J, Du Y H, Li M D, et al. Advanced Materials Research, 2014, 3226, 1562.
29 Zahalkova J,Rovnanikova P. Materials Science Forum, 2016, 865, 22.
30 Liu J,Wu K, Wang Y, et al. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32(5), 1072.
31 Ince C, Derogar S,Ball R J, et al. Advances in Cement Research, 2019, 31(8), 343.
32 Pokorny J, Záleská M,Pavlíková M, et al. In: International Conference of Numerical Analysis and Applied Mathematics.Rhodes,2019,pp.15003.
33 Marušiak Š, Pavlíková M, Pavlík Z. In: Special Concrete and Compo-sites 2019: 16th International Conference. Lisek, 2020, pp. 020024.
34 Chen M, Li L, Wang J, et al. Construction and Building Materials, 2020, 234, 117391.
35 Liu J, Shao P, Wang S. In: International Symposium on Materials Application and Engineering. Chiang Mai, 2016, pp.07017.
36 Rahhal V, Talero R. Construction and Building Materials, 2009, 23(11), 3367.
37 Bagci C,Kutyla G P, Kriven W M. Ceramics International, 2017, 43(17), 14784.
38 Zheng R,Ren Z,Gao H, et al. Journal of Alloys and Compounds, 2018, 757,364.
39 Kurtay M,Gerengi H, Kocak Y, et al. Construction and Building Mate-rials, 2020, 236,117572.
40 Degirmenci N,Yilmaz A. Construction and Building Materials, 2009, 23(1), 284.
41 Wei J,Gencturk B. Journal of Materials in Civil Engineering, 2018, 30(11), 04018282.
42 Xu B. Analysis of freeze-thaw failure mechanism of concrete mixed with diatomite. Master's Thesis, Jilin University, China, 2019(in Chinese).
徐彬.掺加硅藻土混凝土冻融破坏机理分析.硕士学位论文, 吉林大学, 2019.
43 Sun M, Zou C, Xin D. Cement and Concrete Composites, 2020, 114, 10373.
44 Sarıdemir M, Çelikten S, Çiflikli M, et al. Structural Concrete, 2020, 22, E273.
45 Qian T, Li J. Energy, 2018, 142,234.
46 Costa J A C, Martinelli A E, Nascimento R M D, et al. Construction and Building Materials, 2020, 232,117167.
47 Xu B, Li Z. Energy, 2014, 72,371.
48 Xu B, Li Z. Applied Energy, 2013, 105, 229.
49 Xu B, Li Z. Applied Energy, 2014, 121,114.
50 Miliozzi A,Chieruzzi M, Torre L. Applied Energy, 2019, 250, 1023.
51 Wang P,Yang Y, Wang H, et al. Surface and Coatings Technology, 2019, 362, 90.
52 Colombo I G, Colombo M,Di Prisco M, et al. Advances in Building Energy Research, 2021, 15(2), 231.
53 Zaetang Y, Wongsa A, Sata V, et al. Construction and Building Mate-rials, 2013, 48, 585.
54 Topçu İ B, Uygunoğlu T. Construction and Building Materials, 2010, 24(7), 1286.
55 Luo X,Ma Q,Gu W, et al. Science Technology and Engineering, 2018, 18(20), 310(in Chinese).
罗小宝, 马芹永, 顾皖庆,等.科学技术与工程, 2018, 18(20), 310.
56 Posi P, Lertnimoolchai S,Sata V, et al. KSCE Journal of Civil Enginee-ring, 2014, 18(5), 1429.
57 Posi P,Lertnimoolchai S,Sata V, et al. Construction and Building Mate-rials, 2013, 47,896.
58 Pokorny J, Záleská M, Pavlíková M, et al. In: International Conference of Numerical Analysis and Applied Mathematics.Rhodes,2017,pp.25003.
59 Zakrevskaya L V,Gandelsman I A,Gavrilenko A A, et al. IOP Conference Series Materials Science and Engineering, 2019, 660, 012035.
60 Mejía J M,De Gutiérrez R M,Montes C. Journal of Cleaner Production, 2016, 118,133.
61 Hassan H S, Abdel-Gawwad H A, Vásquez-García S R, et al. Journal of Cleaner Production, 2019, 209, 1420.
62 Thammarong S, Lertcumfu N, Jaita P, et al. Key Engineering Materials, 2019, 4780,267.
63 Sinsiri T, Phoo-Ngernkham T, Sata V, et al. Computers and Concrete, 2012, 9,427.
64 Liguori B,Capasso I, Romeo V, et al. Journal of Cellular Plastics, 2017, 53(5), 525.
65 Galzerano B,Capasso I, Verdolotti L, et al. Materials & Design, 2018, 145, 196.
66 Luan X,Li J, Liu L, et al. Materials Chemistry and Physics, 2019, 235, 121742.
67 Arbi K, Palomo A, Fernández-Jiménez A. Ceramics International, 2013, 39(8), 9237.
68 Xu S,Wang J, Jiang Q, et al. Journal of Cleaner Production, 2016, 119, 118.
69 Xu S, Wang J,Ma Q, et al. Construction and Building Materials, 2014, 73, 33.
70 Gencel O,Jose D,Sutcu M, et al. Construction and Building Materials, 2016, 113, 732.
71 Zemanová L, Pokorny J, Pavlíková M, et al. Materials Science Forum, 2017, 909, 286.
72 Cong P, Chen S, Chen H. Construction and Building Materials, 2012, 30,495.
73 Tan Y Q, Zhang L, Zhang X Y. Construction and Building Materials, 2012, 36, 787.
74 Mohd Shukry N A, Abdul Hassan N, Abdullah M E, et al. International Journal of Pavement Engineering, 2018, 21(4), 428.
75 Guo Q, Li L, Cheng Y, et al. Materials & Design (1980-2015), 2015, 66, 51.
76 Davar A, Tanzadeh J, Fadaee O. Construction and Building Materials, 2017, 153,238.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 余明先, 张景贤. 造孔剂法制备硅藻土基多孔陶瓷及其性能研究[J]. 材料导报, 2022, 36(Z1): 21070121-5.
[3] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[4] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[5] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[6] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[7] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[8] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[9] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[10] 姚维, 郑伯坤, 邱景平, 黄腾龙, 尹旭岩. 外加剂对膨胀充填材料性能的影响[J]. 材料导报, 2022, 36(Z1): 20070045-5.
[11] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[12] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[13] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[14] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[15] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed