Please wait a minute...
材料导报  2022, Vol. 36 Issue (14): 21030183-6    https://doi.org/10.11896/cldb.21030183
  金属与金属基复合材料 |
加氢换热器用321不锈钢、镍基合金825氢脆敏感性研究
徐秀清1, 王玮2,3, 陈之腾2, 李云2, 胡海军2
1 石油管材及装备材料服役行为与结构安全国家重点实验室,西安 710049
2 西安交通大学化学工程与技术学院,西安 710049
3 西安航天动力研究所,西安 710049
Research on Hydrogen Embrittlement Sensitivity of 321 Stainless Steel and Nickel-based Alloy 825 for Hydrogenation Heat Exchanger
XU Xiuqing1, WANG Wei2,3, CHEN Zhiteng2, LI Yun2, HU Haijun2
1 State Key Laboratory of Performance and Structural Safety for Petroleum Tubular Goods and Equipment Materials, Xi'an 710049, China
2 School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
3 Xi'an Aerospace Propulsion Inititute, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 4327KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 加氢换热器作为加氢装置的核心设备,其安全运行对我国石化行业发展有着重要意义。由于加氢换热器长期运行于高温、高压、临氢等恶劣工况条件下,因氢脆等原因引起的泄漏、开裂事故频繁发生,造成非计划停工。因此,本工作选取加氢换热器常用材料镍基合金Incoloy 825和AISI 321不锈钢作为研究对象,采用电化学动态充氢慢应变速率拉伸试验(SSRT),同时借助SEM对样品进行断口分析,借助XRD分析充氢前后样品的物相变化,比较研究了两种材料在氢环境下的力学性能劣化趋势、断裂行为及抗氢性能。研究结果表明:(1)321不锈钢在氢的作用下会发生马氏体相变,而镍基合金825则会生成氢化物。(2)氢会显著降低321不锈钢和镍基合金825的塑性,且随充氢电流密度增大,氢致塑性损失程度增大。(3) 不锈钢321和镍基合金825在空气中拉伸时均为韧窝型断裂,随充氢电流密度增大321不锈钢的断裂模式转变为沿晶开裂和准解理型穿晶开裂共存的混合断裂,镍基合金825的断裂模式转变为准解理断裂。因此,321不锈钢在应力/氢的交互作用下会使抗氢性能较好的奥氏体发生马氏体相变,故321不锈钢的抗氢性能比镍基合金825差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐秀清
王玮
陈之腾
李云
胡海军
关键词:  加氢换热器  氢脆  奥氏体不锈钢  镍基合金  电化学充氢    
Abstract: As the core equipment of the hydrogenation unit, the safe operation of the hydrogenation heat exchanger is of great significance to the development of petrochemical industry in China. Due to the long-term operation under severe working conditions such as high temperature, high pressure and hydrogen exposure, the hydrogenation heat exchanger is frequently subject to leakage and cracking accidents caused by hydrogen embrittlement, resulting in unplanned shutdown. Therefore, the nickel-based alloys Incoloy 825 and AISI 321 stainless steel for hydrogenation heat exchangers were selected as the research objects. The electrochemical dynamic hydrogen charging slow strain rate tensile test (SSRT) was used. At the same time, the XRD and SEM was used to analyze the change of the samples' physical properties and fractures before and after hydrogen charging. The comparative study on deterioration tendency, fracture behavior and hydrogen resistance under hydrogen environment of two kinds of materials is carried out. As test results shown, (ⅰ) 321 will convert to martensite while 825 produce hydrides under the action of hydrogen;(ⅱ) hydrogen can significantly reduce the plasticity of 321 and 825 materials, and the plastic loss caused by hydrogen will increase with the increase of hydrogen charging current density; (ⅲ)both 321 and 825 show dimple type fractures when stretched in air. With the increase of hydrogen charging current density, 321 transforms into a mixed fracture mode of intergranular cracking and quasi-cleavage type transgranular crac-king, and 825 transforms to quasi-cleavage fracture. In conclusion, under the stress/hydrogen interaction, the austenite with good hydrogen resistance of 321 stainless steel is converted to martensite, so the hydrogen resistance of 321 stainless steel is worse than that of 825 nickel-based alloy.
Key words:  hydrogenation heat exchanger    hydrogen embrittlement    austenitic stainless steel    nickel-based alloy    electrochemical hydrogen charged
发布日期:  2022-07-26
ZTFLH:  TG172  
基金资助: 国家重点研发项目(2018YFC0808800)
通讯作者:  huhaijun@mail.xjtu.edu.cn   
作者简介:  徐秀清,2011年毕业于北京航空航天大学,获材料物理与化学专业博士学位。目前就职于中国石油集团石油管工程技术研究院腐蚀与防护研究所,高级工程师。主要从事炼化管道的腐蚀机理与防护技术的研究,发表论文20余篇。
胡海军,西安交通大学化学工程与技术学院化工机械系副教授、硕士研究生导师,本硕博均毕业于西安交通大学。从事过程系统可靠性与风险分析,维修优化方面的研究,发表论文40余篇。
引用本文:    
徐秀清, 王玮, 陈之腾, 李云, 胡海军. 加氢换热器用321不锈钢、镍基合金825氢脆敏感性研究[J]. 材料导报, 2022, 36(14): 21030183-6.
XU Xiuqing, WANG Wei, CHEN Zhiteng, LI Yun, HU Haijun. Research on Hydrogen Embrittlement Sensitivity of 321 Stainless Steel and Nickel-based Alloy 825 for Hydrogenation Heat Exchanger. Materials Reports, 2022, 36(14): 21030183-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030183  或          http://www.mater-rep.com/CN/Y2022/V36/I14/21030183
1 Li Y Z, Li Y T. Chemical Engineering & Machinery, 2020, 47(1), 11(in Chinese).
黎宇仲, 黎荫棠. 化工机械, 2020, 47(1), 11.
2 Zhang Z. Ω ring hydrogenation heat exchanger technology research. Master's Thesis, College of Mechanical Engineering China University of Petroleum, China, 2010(in Chinese).
张峥. Ω环加氢换热器制造技术研究. 硕士学位论文, 中国石油大学, 2010.
3 Hu H J, Li K, Wu W, et al. Journal of Xi'an Jiaotong University, 2016, 50(7), 89(in Chinese).
胡海军, 李康, 武玮,等. 西安交通大学学报, 2016, 50(7), 89.
4 Wu S H. Process Equipment & Piping, 2019, 56(5), 39(in Chinese).
吴松华. 化工设备与管道, 2019, 56(5), 39.
5 Chang P T, Chen W W, Shan G B, et al. Materials Protection, 2019, 52(3), 127(in Chinese).
常培廷, 陈文武, 单广斌, 等. 材料保护, 2019, 52(3), 127.
6 Elkebir O A, Szummer A. International Journal of Hydrogen Energy, 2002, 27(7), 793.
7 Lu X, Wang D, Wan D, et al. Acta Materialia, 2019, 179, 36.
8 Yang Y J, Gao K W, Chen C F. International Journal of Minerals Metallurgy and Materials, 2010, 17(1),58.
9 Xie D G, Li S Z, Li M, et al. Nature Communications, 2016, 7, 168.
10 Kirchheim R. Scripta Materialia, 2009, 62(2), 67.
11 Ferreira P J, Robertson I M, Bimbaum H K. Acta Materialia, 1998, 46(5), 1749.
12 Zhu W Y. Hydrogen embrittlement and stress corrosion cracking, Science Press, China, 2013(in Chinese).
褚武扬. 氢脆和应力腐蚀, 科学出版社, 2013.
13 Fan Y H. Effect of microstructures on the hydrogen embrittlement of stainless steels. Ph.D. Thesis, University of Science and Technology of China, China, 2019(in Chinese).
范宇恒. 不锈钢微观组织结构对其氢脆性能的影响. 博士学位论文, 中国科学技术大学, 2019.
14 Fan Y H, Zhang B, Yi H L, et al. Acta Materialia, 2017, 139, 188.
15 Dai Q X, Cheng X N, Wang A D. Materials Reports, 2002(4), 35(in Chinese).
戴起勋, 程晓农, 王安东. 材料导报, 2002(4), 35.
16 Wang Y F, Wang X W, Gong J M, et al. International Journal of Hydrogen Energy, 2014, 39(25), 13909.
17 Martin M, Weber S, Theisen W. International Journal of Hydrogen Energy, 2013, 38(34), 14887.
18 Zhang L, Wen M, Imade M, et al. Acta Materialia, 2008, 56(14), 3414.
19 Yu C Y. Total Corrosion Control, 2015, 29(8), 11(in Chinese).
余存烨. 全面腐蚀控制, 2015, 29(8), 11.
20 Han G, He J, Fukuyama S, et al. Acta Materialia, 1998, 46(13), 4559.
21 Rozenak P, Bergman R. Materials Science & Engineering A, 2006, 437(2),366.
22 Li J X, Wang W, Zhou Y, et al. Acta Metallurgica Sinica, 2020, 56(4), 444(in Chinese).
李金许, 王伟, 周耀, 等. 金属学报, 2020, 56(4), 444.
23 Fu H, Wang W, Zhao H Y, et al. Corrosion Science, 2020, 162, 108191.
[1] 周桂娟, 童志, 陈晓华, 郑文跃, 熊道英, 王艳林. X80管线钢焊接与焊缝开裂影响因素研究进展[J]. 材料导报, 2022, 36(2): 21100169-9.
[2] 毛江鸿, 薛倩倩, 张军, 罗林, 马佳星. 电化学修复后钢筋低周疲劳性能退化的时间效应及其影响[J]. 材料导报, 2022, 36(12): 21050263-7.
[3] 翟建明, 商学欣, 王汉奎, 徐彤, 于海洋, 孙永辉, 柳旺. 基于4130X材料的高压氢脆评价方法研究[J]. 材料导报, 2021, 35(z2): 437-442.
[4] 唐紫苑, 张淑婷, 杜开平, 宣鹏举, 司丽娜. 包埋渗技术在镍基高温合金中的应用[J]. 材料导报, 2021, 35(Z1): 389-394.
[5] 初铭强, 丁仁根, 张书彦, 郑江鹏, 张楠. 航空零部件加工表面完整性[J]. 材料导报, 2021, 35(7): 7183-7189.
[6] 陈志林, 曹驰, 杨瑞成, 牟鑫斌, 陈碧碧, 胡秋晨. 奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J]. 材料导报, 2021, 35(6): 6161-6166.
[7] 李连奇, 杨占兵. 奥氏体不锈钢辐照肿胀和偏析的研究进展[J]. 材料导报, 2021, 35(5): 5122-5129.
[8] 刘成龙, 唐正友, 马亮, 马婉婉, 郭昊东, 丁桦. 254SMo超级奥氏体不锈钢时效析出行为及析出相对其力学性能的影响[J]. 材料导报, 2021, 35(24): 24147-24151.
[9] 董振东, 童志, 周洪宇, 王慧敏, 郑文跃, 孙晓冉, 丁辉. 抽油杆钢材的发展和抽油杆的服役失效[J]. 材料导报, 2021, 35(19): 19161-19169.
[10] 李福贵, 雷玉成, 李天庆, 朱强, 张雪宁. 奥氏体不锈钢焊接接头辐照偏析和辐照硬化的研究[J]. 材料导报, 2020, 34(4): 4098-4102.
[11] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[12] 谢振康, 金伟良, 毛江鸿, 张军, 樊玮洁, 夏晋. 双向电迁移后混凝土内钢筋氢含量变化及影响[J]. 材料导报, 2020, 34(2): 2039-2045.
[13] 马文彬, 郭京京, 骆红云, 唐君, 杨晓光. 低塑性加工对定向凝固镍基合金DZ125高温氧化性能的影响[J]. 材料导报, 2020, 34(10): 10093-10097.
[14] 李凤侠, 张俊, 赵呈刚. 基于文献计量学的氢脆研究的演进、热点和趋势分析[J]. 材料导报, 2019, 33(Z2): 488-496.
[15] 翟建明, 徐彤, 王红霞, 马广青, 商学欣. 316L与16Mn材料抗高压氢脆性能研究[J]. 材料导报, 2019, 33(Z2): 497-500.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed