Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21050263-7    https://doi.org/10.11896/cldb.21050263
  无机非金属及其复合材料 |
电化学修复后钢筋低周疲劳性能退化的时间效应及其影响
毛江鸿1,2, 薛倩倩3, 张军2, 罗林3, 马佳星2
1 四川大学建筑与环境学院,成都 610065
2 浙大宁波理工学院土木建筑工程学院,浙江 宁波 315100
3 重庆交通大学土木工程学院,重庆 400074
Time Effect of the Low Cycle Fatigue Property Degradation of Reinforcement After Electrochemical Repair and Its Influence
MAO Jianghong1,2, XUE Qianqian3, ZHANG Jun2, LUO Lin3, MA Jiaxing2
1 College of Architecture & Environment, Sichuan University, Chengdu 610065, China
2 School of Civil Engineering and Architecture, Ningbo Tech University, Ningbo 315100, Zhejiang, China
3 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 5051KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对电化学修复后经过不同静置时间的钢筋进行了低周疲劳试验,通过疲劳寿命、滞回曲线、剩余强度等力学性能指标研究了静置时间对电化学修复后钢筋疲劳性能的影响,并推导得到不同静置时间下钢筋疲劳的本构参数,基于此本构进行数值模拟,探究了静置时间对电化学修复后桥墩抗震性能的影响。结果表明,电化学修复后钢筋的疲劳寿命和总耗能能力分别下降了12%~23%及13.2%~30%;随着电流的介入,钢筋软化阶段提前,其塑性损伤发展增快,强度和刚度下降速率增大,疲劳失效进程也加快;随着静置时间的延长,钢筋的疲劳性能在第30 d基本恢复至原有水平,且软化阶段延后,钢筋的塑性性能得到恢复;电化学修复后钢筋疲劳性能的退化会导致构件耗能能力下降和延性退化,但随着静置时间的延长其抗震性能得以恢复。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛江鸿
薛倩倩
张军
罗林
马佳星
关键词:  氢脆  电化学修复  时间效应  低周疲劳  抗震性能    
Abstract: The effect of resting time on the reinforcing steel bar's fatigue performance after electrochemical repair was investigated in this work. The fatigue life, hysteresis curve, residual strength and other mechanical property indexes were obtained by experiments. And the Low-cycle fatigue constitutive model of reinforcing steel bar was established based on experimental data. The effect of resting time on the seismic performance of the bridge pier after electrochemical repair was investigated via numerical simulation. Results show that the fatigue life and total energy dissipation capacity of the reinforcing steel bar after electrochemical repair decreas by 12%—23% and 13.2%—30%, respectively. The softening stage is advanced with the current density increasing. Meanwhile, the development of plastic damage, strength and stiffness reduction rates were accelerated. The fatigue performance of reinforcing steel bar basically recovers to the level of control group after a resting time of 30 d, including the delaying of softening stage and the recovering of plastic properties. The fatigue performance degradation of reinforcing steel after electrochemical repair will lead to the energy dissipation capacity decrease and ductility degradation of reinforced concrete component which can also recover with the resting time.
Key words:  hydrogen embrittlement    electrochemical repair    time effect    low cycle fatigue    seismic performance
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TU37  
基金资助: 国家自然科学基金(51878610; 51638013; 51820105012; 51908496);浙江省自然科学基金(LQ19E080008);宁波市自然科学基金(202003N4313);宁波市“科技创新2025”重大专项(2020Z056)
通讯作者:  zj@nit.zju.edu.cn   
作者简介:  毛江鸿,博士,特聘研究员,2012年获得浙江大学结构工程博士学位。研究工作主要包括工程结构健康监测技术研发与应用、混凝土结构耐久性电化学修复技术研发与应用。已在国内外学术期刊发表学术论文100余篇。
张军,博士,讲师,2017年获得浙江大学结构工程博士学位,研究方向主要包括混凝土结构长期性能检测与提升。已在国内外学术刊物发表论文20余篇。
引用本文:    
毛江鸿, 薛倩倩, 张军, 罗林, 马佳星. 电化学修复后钢筋低周疲劳性能退化的时间效应及其影响[J]. 材料导报, 2022, 36(12): 21050263-7.
MAO Jianghong, XUE Qianqian, ZHANG Jun, LUO Lin, MA Jiaxing. Time Effect of the Low Cycle Fatigue Property Degradation of Reinforcement After Electrochemical Repair and Its Influence. Materials Reports, 2022, 36(12): 21050263-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050263  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21050263
1 Mao J H, Jin W L, Li Z Y, et al. China Journal of Highway and Transport, 2016, 29(1), 61 (in Chinese).
毛江鸿, 金伟良, 李志远, 等. 中国公路学报, 2016, 29(1), 61.
2 Fan W J, Wu Y T, Mao J H, et al. Chinese Journal of Engineering, 2021, 43(6), 778(in Chinese).
樊玮洁, 吴云涛, 毛江鸿, 等. 工程科学学报, 2021, 43(6), 778.
3 Xie Z K, Jin W L, Mao J H, et al. Materials Reports B: Research Papers, 2020, 34(1), 02039 (in Chinese).
谢振康, 金伟良, 毛江鸿, 等. 材料导报:研究篇, 2020, 34(1), 02039.
4 Gong Y J, Zhang J, Mao J H, et al. Materials Reports, 2021, 35(6), 6146(in Chinese).
龚园军, 张军, 毛江鸿, 等. 材料导报, 2021, 35(6), 6146.
5 Sun W B, Gao X J, Sun Y Z, et al. Journal of Harbin Engineering University, 2009, 30(10), 1108(in Chinese).
孙文博, 高小建, 杨英姿, 等. 哈尔滨工程大学学报, 2009, 30(10), 1108.
6 Zhang J, Jin W L, Mao J H, et al. Construction and Building Materials, 2020, 237, 117629.
7 Huang T L, Zhao Z Y, Song L, et al. Journal of Central South University (Science and Technology), 2019, 50(8), 1901(in Chinese).
黄天立, 赵志彦, 宋力, 等.中南大学学报(自然科学版), 2019, 50(8), 1901.
8 Sun J Z, Huang Q, Ren Y. Journal of South China University of Techno-logy (Natural Science Edition), 2015, 43(8), 113(in Chinese).
孙俊祖, 黄侨, 任远. 华南理工大学学报(自然科学版), 2015, 43(8), 113.
9 Luo X Y, Chen J F, Long H, et al. Journal of Building Structures, 2021, 42(4), 69(in Chinese).
罗小勇, 程俊峰, 龙昊, 等.建筑结构学报, 2021, 42(4), 69.
10 Mcmahon C J. Engineering Fracture Mechanics, 2001, 68(6), 773.
11 Lyu X Q, Chen Y X. Shanghai Metals, 2013, 35(5), 14(in Chinese).
吕学奇, 陈业新. 上海金属, 2013, 35(5), 14.
12 Filho C, Mansur M B, Modenesi P J, et al. Materials Science & Enginee-ring A, 2010, 527(18-19), 4947.
13 Guo Y J, Wang C F, Li J X, et al. Journal of Aeronautical Materials, 2012, 32(3),5(in Chinese).
郭昀静, 王春芳, 李建锡, 等. 航空材料学报, 2012, 32(3), 5.
14 Liang Y. The experimental analysis of the effects of alloy-elements on hydrogen emb-rittlement in heavy forging. Master's Thesis, Yanshan University, China, 2016 (in Chinese).
梁阳. 大型锻件中合金元素对其氢脆敏感性影响的实验研究. 硕士学位论文, 燕山大学, 2016.
15 中国人民共和国国家质量监督检验检疫总局/中国国家标准化管理委员会. GB/T 15248-2008 金属材料轴向等幅低循环疲劳试验方法, 中国, 2008.
16 Li T, Jin W L, Xu C, et al. Journal of Chinese Society for Corrosion and Protection, 2017, 37(4), 382(in Chinese).
李腾, 金伟良, 许晨, 等.中国腐蚀与防护学报, 2017, 37(4), 382.
17 Jiao M Y, Jin W L, Mao J H, et al. Journal of Chinese Society for Corrosion and Protection, 2018, 38(5), 463(in Chinese).
焦明远, 金伟良, 毛江鸿, 等. 中国腐蚀与防护学报, 2018, 38(5), 463.
18 中华人民共和国交通运输部. JTS 153-2-2012 海港工程钢筋混凝土结构电化学防腐技术规范, 中国, 2012.
19 Zhou J Q, Mao J H, Song X, et al. Bridge Construction, 2021, 51(1), 136(in Chinese).
周建强, 毛江鸿, 宋鑫, 等. 桥梁建设, 2021, 51(1), 136.
20 Mao J H, Jin W L, Li Z Y, et al. China Journal of Highway and Transport, 2016, 29(1), 61(in Chinese).
毛江鸿, 金伟良, 李志远, 等. 中国公路学报, 2016, 29(1), 61.
21 Xu C, Jin W L, Wang H L, et al. Construction & Building Materials, 2016, 115, 602.
22 Lei D, Zhao J H, Gong M, et al. Journal of Experimental Mechanics, 2008(5), 60(in Chinese).
雷冬, 赵建华, 龚明, 等. 实验力学, 2008(5), 60.
23 Tsuchida Y, Watanabe T, Suzuki G, et al. Procedia Engineering, 2011, 10(1), 1176.
24 Zhou C, Ye B, Song Y, et al. International Journal of Hydrogen Energy, 2019, 44(40), 22547.
25 Coffin L F. American Society of Mechanical Engineers, 1954, 76(8), 931.
26 Manson S S. Heat transfer symposium, University of Michigan Engineering Research Institute, Michigan, 1953.
27 Yang H, Ran X F, Xie Q. Journal of Building Structures, 2021, 42(3), 105(in Chinese).
杨红, 冉小峰, 谢琴. 建筑结构学报, 2021, 42(3), 105.
28 Brown J, Kunnath S K. Earthquake engineering, University of Central Florida, Orlando, 2000.
29 Kunnath S K, Heo Y A, Mohle J F. Journal of Structural Engineering, 2009, 135(4), 335.
30 Zhang Y T, Zhao B G, Li R G, et al. Engineering Mechanics, 2016(4), 121(in Chinese).
张耀庭, 赵璧归, 李瑞鸽, 等. 工程力学, 2016(4), 121.
31 Mazzoni S, McKenna F, Fenves G L. Open sees command language ma-nual, University of California, Berkeley, 2007.
32 Xue H F. Study on low-cycle fatigue behavior and deformation capacity of longitude-nal steel bar in RC columns considering effect of buckling. Master's Thesis, Chongqing University, China, 2012 (in Chinese).
薛昊飞. 钢筋高应变低周疲劳寿命的统计分析及钒微合金化的影响. 硕士学位论文, 重庆大学, 2012.
33 Gong Y J. Study on low cycle fatigue properties of hydrogen containing steel bars after electrochemical repair. Master's Thesis, Chongqing Jiaotong University, 2020 (in Chinese).
龚园军. 电化学修复后含氢钢筋的低周疲劳性能研究. 硕士学位论文, 重庆交通大学, 2020.
34 Sritharan S. Analysis of concrete bridge joints subjected to seismic actions. Master's Thesis, University of California, 1998.
[1] 周桂娟, 童志, 陈晓华, 郑文跃, 熊道英, 王艳林. X80管线钢焊接与焊缝开裂影响因素研究进展[J]. 材料导报, 2022, 36(2): 21100169-9.
[2] 翟建明, 商学欣, 王汉奎, 徐彤, 于海洋, 孙永辉, 柳旺. 基于4130X材料的高压氢脆评价方法研究[J]. 材料导报, 2021, 35(z2): 437-442.
[3] 龚园军, 张军, 毛江鸿, 金伟良, 谭昱, 罗林. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146-6150.
[4] 董振东, 童志, 周洪宇, 王慧敏, 郑文跃, 孙晓冉, 丁辉. 抽油杆钢材的发展和抽油杆的服役失效[J]. 材料导报, 2021, 35(19): 19161-19169.
[5] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[6] 谢振康, 金伟良, 毛江鸿, 张军, 樊玮洁, 夏晋. 双向电迁移后混凝土内钢筋氢含量变化及影响[J]. 材料导报, 2020, 34(2): 2039-2045.
[7] 李凤侠, 张俊, 赵呈刚. 基于文献计量学的氢脆研究的演进、热点和趋势分析[J]. 材料导报, 2019, 33(Z2): 488-496.
[8] 翟建明, 徐彤, 王红霞, 马广青, 商学欣. 316L与16Mn材料抗高压氢脆性能研究[J]. 材料导报, 2019, 33(Z2): 497-500.
[9] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[10] 黄广棋,张桂凯,罗朝以,唐涛. Fe-Al金属间化合物氢脆效应研究现状[J]. 《材料导报》期刊社, 2018, 32(11): 1878-1883.
[11] 何诗华,严捍东. 国内节能型剪力墙技术研究和应用现状分析[J]. 《材料导报》期刊社, 2018, 32(11): 1910-1915.
[12] 高心心, 郭建章, 张海兵. 1 000 MPa级高强钢焊接件的氢脆敏感性研究[J]. 《材料导报》期刊社, 2017, 31(6): 93-97.
[13] 蒋友宝, 吴林华, 陈治茂. 配有RPC预制管混凝土组合柱的RC框架抗震性能分析*[J]. CLDB, 2017, 31(23): 90-95.
[14] 张笑宇, 冷利, 王占军. 含Zr、Sc的Al-Zn-Mg-Cu合金的低周疲劳行为[J]. 《材料导报》期刊社, 2017, 31(20): 63-67.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed