Please wait a minute...
材料导报  2022, Vol. 36 Issue (2): 21100169-9    https://doi.org/10.11896/cldb.21100169
  金属与金属基复合材料 |
X80管线钢焊接与焊缝开裂影响因素研究进展
周桂娟1, 童志1, 陈晓华2, 郑文跃1,2, 熊道英3, 王艳林4
1 北京科技大学国家材料服役安全科学中心,北京 100083
2 北京科技大学新金属材料国家重点实验室,北京 100083
3 国家石油天然气管网集团有限公司华南分公司,广州 510620
4 北京科技大学材料科学与工程学院,北京 100083
A Review on the Welding of X80 Pipeline Steel and Factors Affecting Weld Cracking
ZHOU Guijuan1, TONG Zhi1, CHEN Xiaohua2, ZHENG Wenyue1,2, XIONG Daoying3, WANG Yanlin4
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
3 South China Branch of National Oil & Gas Piping Network Corporation, Guangzhou 510620, China
4 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 10597KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提升油气运输的经济性,保证油气运输管道系统可靠性,管道工程不断向着高强度、高韧性、大管径的趋势发展。其中X80管线钢在新型高级别管线钢中应用最广,但由于近几年涉及环焊缝的失效事故,环焊缝的服役安全问题备受关注,有关X80管线钢焊接接头组织性能以及接头裂纹产生原因的探究也日趋深入。本文分析和总结了国内外X80管线钢基材制备工艺和显微组织、相关焊接接头组织性能和开裂机制等方面的研究成果,探究了X80钢裂纹产生的原因。环焊缝开裂主要是焊口组织、残余应力和氢效应等因素共同作用的结果。影响氢致开裂的主要因素及相关规律可总结为:(1)焊接热输入量直接影响接头质量;(2)热影响区晶粒大小,粗大的晶粒会导致热影响区局部软化;(3)X80管线钢强度高,与低级别管线钢(<X70级别)相比具有更强的冷裂倾向,焊后热处理能够有效抑制氢致裂纹;(4)夹杂物界面、铁素体与M-A岛界面以及M-A岛内部界面都是裂纹形核的位置。为提升管道的抗氢脆性能,提出了以下建议:一方面可以通过控制合金成分和调整工艺增加氢陷阱数,使氢在管线钢中均匀分布,同时细化组织;另一方面可通过选择合适的焊接方法,优化焊接工艺参数以提高焊接接头的抗氢脆性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周桂娟
童志
陈晓华
郑文跃
熊道英
王艳林
关键词:  X80管线钢  控轧控冷(TMCP)  焊接  裂纹  氢脆    
Abstract: Pipeline construction is constantly developing towards higher strength, higher toughness and larger-diameter in order to improve the economy of oil and gas transportation, to ensure the reliability of the oil and gas transportation pipeline system. X80 is the most widely used high-grade pipeline steels. The safety issues related to the girth welds are receiving more and more attention due to the failure accidents involved girth welds in recent years. Research on the microstructure and properties of X80 pipeline steel welded joints and the causes of joint cracks has also been intensified. This article analyzes the research results about the microstructure and properties of X80 pipeline steel welded joints, summarizes the relevant cracking mechanisms performance methods and preparation process for reference in related research or engineering applications. Girth welds cracking is the results of a combination of factors such as microstructure, stress, and hydrogen. The factors affecting hydrogen-induced cracking and related law can be summarized as follows: (1) heat input affects the quality of the welded joint directly; (2) coarse structure of the heat-affected zone is prone to local softening; (3) X80 pipeline steel has a tendency to crack than X70 great and lower great due to the martensitic in the heat-affected zone, post heat treatment is beneficial to suppress hydrogen-induced cracking; (4) the location of crack nucleation: the interface of inclusions, the interface between ferrite and M-A island and internal of M-A island. We suggest in the paper two countermeasures against hydrogen embrittlement, one is controlling the element composition and content, while the other is applying appropriate welding method & optimizing welding parameters.
Key words:  X80 pipeline steels    thermo-mechanical controlled processing (TMCP)    welding    cracking    hydrogen embrittlement
出版日期:  2022-01-25      发布日期:  2022-01-26
ZTFLH:  TE832  
基金资助: 北京市科技计划项目(Z201100004520011);国家自然科学面上基金(52071012)
通讯作者:  chenxh@skl.ustb.edu.cn;zheng_wenyue@ustb.edu.cn21100169-1   
作者简介:  周桂娟,2010年毕业于哈尔滨工程大学,获得工学学士学位。2013年获得哈尔滨工程大学工学硕士学位,现为北京科技大学材料服役安全科学中心博士研究生,在郑文跃教授指导下进行研究。主要研究方向为管线钢的焊接及氢致裂纹。陈晓华,北京科技大学新金属材料国家重点实验室副教授。1992年毕业于哈尔滨工业大学,2009年获得北京科技大学博士学位。中国材料研究学会金属间化合物与非晶分会科普委员。曾以于美国佐治亚理工学院访学。目前主要研究方向为纳米结构的金属材料、高熵合金、非晶合金和利用聚焦离子束进行微/纳米加工和三维重建。发表SCI、EI期刊论文及会议论文80余篇,申请专利20余项。郑文跃,国家特聘专家,北京科技大学杰出学者,国家材料服役安全科学中心教授、博导。1983年毕业于北京钢铁学院,1988年获得英国曼彻斯特大学博士学位。新金属材料国家重点实验室客座教授、CSTM标准委员会材料服役标准分委会会员。曾多年就职加拿大自然资源部, 先后担任焊接与服役完整性室主任、能源材料总监。曾任ISO TC156/SC1全生命周期腐蚀控制标准委员会委员及立项负责人。目前主要研究方向为金属开裂与材料的环境损伤、高温高腐蚀性环境金属结构及涂层的设计、能源装备中材料的服役性能及先进钢材在油气行业的应用。发表学术专著5部,SCI、EI期刊论文及会议论文100余篇,非公开的商业报告30余篇。
引用本文:    
周桂娟, 童志, 陈晓华, 郑文跃, 熊道英, 王艳林. X80管线钢焊接与焊缝开裂影响因素研究进展[J]. 材料导报, 2022, 36(2): 21100169-9.
ZHOU Guijuan, TONG Zhi, CHEN Xiaohua, ZHENG Wenyue, XIONG Daoying, WANG Yanlin. A Review on the Welding of X80 Pipeline Steel and Factors Affecting Weld Cracking. Materials Reports, 2022, 36(2): 21100169-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100169  或          http://www.mater-rep.com/CN/Y2022/V36/I2/21100169
1 Gao H L.Pipeline steel and pipeline pipe, China Petrochemical Press, China, 2012 (in Chinese).
高惠临. 管线钢与管线钢管, 中国石化出版社, 2012.
2 Zhao W. Study on corrosion resistance of X80 pipeline steel and its welded joint. Ph.D. Thesis, Shandong University, China, 2016 (in Chinese).
赵伟. X80管线钢与其焊接接头耐蚀性研究. 博士学位论文, 山东大学, 2016.
3 Sui Y L. Welding technology research for grith of domestic X80 grade line pipe. Ph.D. Thesis, Tianjin University, China, 2008 (in Chinese).
隋永莉. 国产X80管线钢焊接技术研究. 博士学位论文, 天津大学, 2008.
4 Gianetto J A, Fazeli F, Shalchi-Amirkhiz B, et al. In:Proceedings of the 2016 11th International Pipeline Conference. Canada, 2016, 64305.
5 Wang B, Xu Y C, Hu J. et al.Transactions of Indian Institute of Metals, 2018, 71(10), 2517.
6 Li H, Liang J L, Feng Y L, et al.Rare Metals, 2014, 33(4), 493.
7 Aydin H, Nelson T W.Materials Science & Engineering A, 2013, 586, 313.
8 Alizadeh M, Bordbar S.Corrosion Science, 2013, 70, 170.
9 国务院安全委员会.国务院安委会办公室关于贵州省黔西南州晴隆县“7·2”中石油输气管道中石油输气管道燃烧爆炸事故的通报[EB/OL].2017-07-11.http:∥www.chinasafety.gov.cn/awhsy/awhdt/201707/t20170711_213056.shtml.
10 Zhang K, Qiu C L, Zhao Y, et al.Journal of Iron and Steel Research, 2011, 23(3), 23 (in Chinese).
张凯, 邱春林, 赵宇, 等. 钢铁研究学报, 2011, 23(3), 23.
11 Li L F. Effects of vanadium on resistance to hydrogen corrosion and mechanical properties in X80 pipeline steel. Ph.D. Thesis, University of Science and Technology Beijing, China, 2020 (in Chinese).
李龙飞. 钒对X80级管线钢抗氢腐蚀及力学性能影响研究. 博士学位论文, 北京科技大学, 2020.
12 Zou M S. Research on microstructure and corrosion resistance for welding joint of X80 pipeline steel. Ph.D. Thesis, Chang'an University, China, 2016 (in Chinese).
邹明森. X80管线钢焊接接头的微观组织及耐蚀性研究. 博士学位论文, 长安大学, 2016.
13 JFE Steel Corp. WIPO Patent, WO2010090349, 2010
14 Han D, Qi L H, Huo C Y, et al.Petroleum Tubular Goods & Instruments, 2021(7), 55 (in Chinese).
David Han, 齐丽华, 霍春勇, 等. 石油管材与仪器, 2021(7), 55.
15 Li L F, Song B, Cui X K, et al.International Journal of Hydrogen Energy, 2020, 45 (55), 30828.
16 Guo B. Study on TMCP and welding processes of X90 pipeline steel. Ph.D. Thesis, Yanshan University, China, 2017 (in Chinese).
郭斌. X90管线钢TMCP与焊接工艺基础研究, 博士学位论文, 燕山大学, 2017.
17 Sun Y, Cheng Y F.International Journal of Hydrogen Energy, 2021, 4, 115.
18 Ye H Y. Study on smelting and rolling processing for X80 pipeline steel in Shou Qin Co., Ltd. Master's. Thesis, Yanshan University, China, 2015, (in Chinese).
叶洪义. 首秦公司X80管线钢冶炼与轧制工艺研究. 硕士学位论文, 燕山大学, 2015.
19 Zhao W M, Du T H, Li X S, et al. Corrosion Science, 2021, 192, 109797.
20 Arora K S, Pandu S R, Shajan N, et al. International Journal of Pressure Vessels and Piping, 2018, 163, 36.
21 Wang C M, Wu X F, Liu J, et al.Materials Science and Engineering A, 2006, 438, 267.
22 Xiao F R, Liao B, Shan Y Y, et al.Materials Science and Engineering A, 2006, 431(1), 41.
23 Niu J, Qi L H, Liu Y L, et al.Transactions of Nonferrous Metals Society of China, 2009, 19, 573.
24 Chen X W, Liao B, Qiao G Y, et al.Journal of Iron and Steel Research International, 2013, 20(12), 53.
25 Bordbar S, Alizadeh M, Hashemi S H.Materials and Design, 2013, 45, 597.
26 Miao H J, Wang Y, Zeng L.Heat Treatment of Metals, 2012, 37(9), 64 (in Chinese).
苗华军, 王岩, 曾莉. 金属热处理, 2012, 37(9), 64.
27 Chen Y Q, Du Z Y, Xu L H.Transactions of the China Welding Institution, 2010, 31(5), 101 (in Chinese).
陈延清, 杜则裕, 许良红. 焊接学报, 2010, 31(5), 101.
28 Han L, Ren H P, Jin Z L, et al.Heat Treatment of Metals, 2012, 37(7), 86 (in Chinese).
韩乐, 任慧平, 金自力, 等. 金属热处理, 2012, 37(7), 86.
29 API . API SPEC 5L-2015, Specification for Line Pipe, 2015.
30 Liu W C, Li J L, Jiang H Z. Welded Pine and Tube, 2021, 44(1), 48 (in Chinese).
刘炜辰, 李嘉良, 蒋浩泽. 焊管, 2021, 44(1), 48.
31 Tong S, Jia S J, Liu Q Y, et al. Welded Pine and Tube, 2019, 42(9) (in Chinese).
童帅, 贾书君, 刘清友, 等. 焊管, 2019, 42(9), 12.
32 Qi L H, Wang L, Gao X X, et al.Welded Pine and Tube, 2021, 44(8), 1 (in Chinese).
齐丽华, 王磊, 高雄雄, 等. 焊管, 2021, 44(8), 1.
33 Lu Y, Shao Q, Sui Y L, et al.Natural Gas Industry, 2020, 40(9) (in Chinese).
陆阳,邵强,隋永莉,等. 天然气工业, 2020, 40(9), 114.
34 Bi Z Y.Welding technology for line pipe, Petroleum Industry Press, China, 2013 (in Chinese).
毕宗岳. 管线钢管焊接技术, 石油工业出版社, 2013.
35 Park G T, Koh S U, Jung H G, et al.Corrosion Science, 2008, 50, 1865.
36 Bai F, Ding H S, Tong L, et al.Progress in Natural Science: Materials International, 2020, 30, 110.
37 Geng Y F, Yin L M, Wang X J, et al.Welding Technology, 2016, 45(2), 9 (in Chinese).
耿燕飞, 尹立孟, 王学军, 等. 焊接技术, 2016, 45(2), 9.
38 Yao Z X, Wang J Z, Liu C, et al.Hot Working Technology, 2018, 47(15), 18 (in Chinese).
姚宗湘, 王金钊, 刘成, 等. 热加工工艺, 2018, 47(15), 18.
39 Khan W N, Chhibber R.Materials Science & Engineering A, 2021, 803, 140476.
40 Gianetto J A, Bowker J T, Dorling D V, et al. In: Conference Record of the 2004 International Pipeline Conference. Canada, 2004, pp. 1485.
41 SY/T 0452—2012石油天然气金属管道焊接工艺评定, 中国石油天然气集团公司, 2012.
42 Tian W P.Southern Metals, 2020(6), 237 (in Chinese).
田万鹏. 南方金属, 2020(6), 237.
43 Xu X L, Huang J P, Zheng G G, et al.Transactions of the China Welding Institution, 2018, 39(9), 36 (in Chinese).
徐学利, 黄景鹏, 郑梗梗, 等. 焊接学报, 2018, 39(9), 36.
44 Huang S B, Hu Q, Yang M, et al.Heat Treatment of Metals, 2017, 42(1), 55 (in Chinese).
黄少波, 胡强,杨眉,等. 金属热处理, 2017, 42(1), 55
45 Du J, Niu H, Zhang W P, et al.Welding Pipe and Tube, 2019, 42(6), 47 (in Chinese).
杜江, 牛辉, 张万鹏, 等. 焊管, 2019, 42(6), 47.
46 Zhang X Y, Gao H L, Bi Z Y, et al.Journal of Materials Engineering, 2010(9), 66 (in Chinese).
张骁勇,高惠临,毕宗岳,等. 材料工程, 2010(9), 66.
47 Zhao H B, Bi Z Y, Niu H, et al.Welded Pipe and Tube, 2017, 40(9), 6 (in Chinese).
赵红波, 毕宗岳, 牛辉, 等. 焊管, 2017, 40(9), 6.
48 Moeinifar S, Kokabi A H, Hosseini H R M.Journal of Materials Proce-ssing Technology, 2011, 211(3) 368.
49 Li Y J, Li W S, Xie Q.Transactions of The China Welding Institution, 2010, 31(5), 105 (in Chinese).
李亚娟, 李午申, 谢琦. 焊接学报, 2010, 31(5), 105.
50 Erofeev V, Grebenshchikova O, Troyanovskaya I.Materials Today: Proceedings, 2019, 19(5), 1891.
51 Chen J, Ji F, Liu X B, et al.Oil & Gas Storage and Transportation, 2014, 33(12), 1297 (in Chinese).
陈娟,季峰,刘学彬, 等. 油气储运, 2014, 33(12), 1297.
21100169-852 Song J, Ma X Q, Guo D S.Oil & Gas Storage and Transportation, 2014, 33(4), 385 (in Chinese).
宋静, 马晓强, 郭东升. 油气储运, 2014, 33(4), 385.
53 Meng B, Gu C H, Zhang L, et al.International Journal of Hydrogen Energy, 2017, 42(11), 7404.
54 Btiottet L, Batisse R, Dinechin G D, et al.International Journal of Hydrogen Energy, 2012, 37(11), 9423.
55 Zapffe C A, Sims C E. Transactions of.AIME, 1941, 145(22), 225.
56 Petch N J. Nature, 1952, 169, 842.
57 Pressouyre G M.Metallurgical Transactions A, 1979, 10, 1571.
58 Liu J N, Dong S H, Zhang J, et al.Oil & Gas Storage and Transportation, 2019, 38(8), 870 (in Chinese).
刘冀宁, 董绍华, 张菁, 等. 油气储运, 2019, 38(8), 870.
59 Li S S, Liu M, Zuo X R.Journal of Materials and Metallurgy, 2013, 12(1), 67 (in Chinese).
李树森, 刘敏, 左秀荣. 材料与冶金学报, 2013, 12(1), 67.
60 Yan K J, Hao S Y, Gao H L.Process Equipment & Piping, 2011, 48(3), 57 (in Chinese).
闫凯鹃,郝世英,高惠临. 化工设备与管道. 2011, 48(3), 57.
61 Yin C H, Xue Z K, Yan C.Welded Pipe and Tube, 2010, 33(1), 13 (in Chinese).
尹长华, 薛振奎, 闫臣. 焊管, 2010, 33(1), 13.
62 Kisaka Y, Senior N, Gerlich A P.Metallurgical and Materials Transactions A, 2019, 50(1), 249.
63 Qiao G Y, Guo B F, Chen X W, et al.Heat Treatment of Metals, 2009, 34(12), 32 (in Chinese).
乔桂英,郭宝峰,陈小伟,等. 金属热处理, 2009, 34(12), 32
64 Xu J, Li P P, Fan Y, et al.Transactions of the China Welding Institution, 2017, 38(1), 22 (in Chinese).
徐杰, 李朋朋, 樊宇, 等. 焊接学报, 2017, 38(1), 22.
65 Yan C Y, Yuan Y, Zhang K Z, et al.Transactions of the China Welding Institution, 2019, 40(12), 41 (in Chinese).
严春妍, 元媛, 张可召, 等. 焊接学报, 2019, 40(12), 41.
66 Li Z Y. Study on strength and toughness optimization of X70 and X90 pipeline steels. Ph.D. Thesis, University of Science and Technology Beijing, China, 2021 (in Chinese).
李忠义. X70和X90管线钢强韧性能优化研究. 博士学位论文, 北京科技大学,2021.
67 Shi X B, Yan W, Wang W, et al.Acta Metallurgica Sinica, 2018, 54(10), 1343 (in Chinese).
史显波, 严伟, 王威, 等. 金属学报, 2018, 54(10), 1343.
68 Duan H, Shan Y Y, Yang K, et al.Welding Pipe and Tube, 2021, 44(9), 7 (in Chinese).
段贺, 单以银, 杨柯, 等. 焊管, 2021, 44(9), 7.
69 Beidokhti B, Koukabi A H, Dolati A.Journal of Materials Processing Technology, 2009, 209(8), 4027.
70 Jin T Y,Liu Z Y,Cheng Y F. International Journal of Hydrogen Energy, 2010, 35(15), 8014.
71 Dong C F, Liu Z Y, et al.International Journal of Hydrogen Energy, 2009, 34(24), 9879.
72 Hejazi D, Haq A J, Yazdipour N, et al.Materials Science and Engineering A, 2012, 551, 40.
73 Wang L, Song R B, Wu X L, et al. China Metallurgy, 2012, 22(6), 40 (in Chinese).
王伦, 宋仁伯, 吴新朗, 等. 中国冶金, 2012, 22(6), 40.
74 Zhang W Y.Welding metallurgy, China Machine Press, China, 2012 (in Chinese).
张文钺. 焊接冶金学, 机械工业出版社, 2012.
75 John C L.Welding metallurgy and weldability, China Machine Press, China, 2017 (in Chinese).
John C L. 焊接冶金与焊接性, 机械工业出版社, 2017.
76 Yao C F, Liu W, Li S S, et al.Shanghai Metals, 2014, 36(9), 54 (in Chinese).
姚春发, 刘伟, 李树森, 等. 上海金属, 2014, 36(9), 54.
77 Gyu Tae Park, Sung Ung Koh, Hwan Gyo Jung, et al.Corrosion Science, 2008, 50(7), 1865.
78 Pressouyre G M, Bernstein I M.Metallurgical and Materials Transactions A, 1981, 12(5), 835.
79 Mohtadi-Bonab M, Szpunar J A, Collins L, et al.International Journal of Hydrogen Energy, 2014, 39(11), 6076.
80 Yamasaki S, Takahashi T. Journal of the Iron and Steel Institite of Japan, 1997, 83(7), 454
81 Humphreys A O, LIU D S, Toroghinezhad M R, et al.IS IJ International, 2002, 42, 52.
82 Wang X M, He X L.IS IJ International, 2002, 42, 38.
83 Beidokhti B, Dolati A, Koukabi A H. Materials Science & Engineering A, 2009, 507(1), 167.
84 Khalili Tabas A A, Beidokhti B, Kiani-Rashid A R.International Journal of Hydrogen Energy, 2021, 46(1), 1012.
85 The American Society of Mechanical Engineers. ASME B 31.12-2014, Hydrogen Piping and Pipelines.
86 The American Society of Mechanical Engineers. ASME B 31.8s-2016, Managing System Integrity of Gas pipelines.
[1] 栗卓新, 田振, 李红, 王义朋, 曹健, 周辰. 纳米陶瓷颗粒对铝合金焊缝强度和微观组织影响的研究进展[J]. 材料导报, 2022, 36(1): 20090070-8.
[2] 刘自刚, 周晓静, 朱婷婷, 陈亮, 陈飞, 许强. A-TIG焊接方法研究现状及展望[J]. 材料导报, 2021, 35(z2): 353-357.
[3] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[4] 翟建明, 商学欣, 王汉奎, 徐彤, 于海洋, 孙永辉, 柳旺. 基于4130X材料的高压氢脆评价方法研究[J]. 材料导报, 2021, 35(z2): 437-442.
[5] 侯锁霞, 任呈祥, 吴超, 赵江昆, 张舵, 张好强. 激光熔覆层裂纹的产生和抑制方法[J]. 材料导报, 2021, 35(Z1): 352-356.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[8] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[9] 张敏, 郭宇飞, 黄超, 张立胜, 张文辉. Ti-6Al-4V三元合金焊接熔池凝固组织模拟[J]. 材料导报, 2021, 35(8): 8116-8120.
[10] 邓德伟, 吕捷, 马玉山, 张勇, 黄治冶. FV520B钢激光焊接工艺参数优化及组织性能[J]. 材料导报, 2021, 35(8): 8127-8133.
[11] 周峰峦, 王存宇, 曹文全, 董瀚. 冷轧中锰钢和等温淬火-碳配分钢裂纹扩展研究[J]. 材料导报, 2021, 35(8): 8164-8168.
[12] 许章华, 谢志雄, 康茂东, 王俊, 董仕节, 彭志贤, 刘静. K4169高温合金铸件铸造缺陷修复及疲劳性能研究[J]. 材料导报, 2021, 35(22): 22115-22120.
[13] 王超, 谢志雄, 罗平, 陈琪, 肖述广, 董仕节, 解剑英. 0.3 mm厚316奥氏体不锈钢的高频感应焊接技术[J]. 材料导报, 2021, 35(22): 22132-22136.
[14] 秦丰, 李睿, 张春波, 周军, 赵衍华. 铝/钢异种金属轴向摩擦焊研究现状[J]. 材料导报, 2021, 35(21): 21228-21235.
[15] 邓呈敏, 程东海, 陈国财, 李东阳, 李文杰, 陈益平, 胡德安. 熔池形态对铝-铜激光焊接头组织和性能的影响[J]. 材料导报, 2021, 35(20): 20052-20056.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed