Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20052-20056    https://doi.org/10.11896/cldb.20090038
  金属与金属基复合材料 |
熔池形态对铝-铜激光焊接头组织和性能的影响
邓呈敏1, 程东海2, 陈国财3, 李东阳3, 李文杰3, 陈益平3, 胡德安3
1 北京石油化工学院光机电装备技术北京市重点实验室,北京 102617
2 北京市安全生产工程技术研究院,北京 102617
3 南昌航空大学航空制造工程学院,南昌 330063
Effect of Different Molten Pool on Microstructure and Properties of Aluminum-Copper Laser Weld Joint
DENG Chengmin1, CHENG Donghai2, CHEN Guocai3, LI Dongyang3, LI Wenjie3, CHEN Yiping3, HU De’an3
1 Beijing Key Laboratory of Optical, Mechanical and Electrical Equipment Technology, Beijing Institute of Petroleum and Chemical Engineering,Beijing 102617, China
2 Beijing Institute of Work Safety Engineering Technology, Beijing 102617, China
3 School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 4445KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对T2紫铜板、2A16铝合金板进行激光熔化焊和熔钎焊试验,分析接头的力学性能,并研究其微观组织及界面形貌,阐述熔池形态对接头组织和性能的影响。结果表明:采用激光熔化焊时得到熔化焊熔池,当焊接线能量Q=1 160 J/cm时,其界面层由Al4Cu9+Al2Cu化合物和(α-Al)+(θ-Al2Cu)共晶组织组成,总厚度为60.9 μm。采用激光熔钎焊时得到熔钎焊熔池,当Q=1 466.67 J/cm时,接头抗拉强度为274.25 MPa,相比熔化焊接头提高了280.9%,其界面层由CuZn5和Al2Cu化合物组成,总厚度为10.23 μm。接头接触界面的互扩散系数(D熔化焊>D熔钎焊)和不同熔池形态下的环形对流共同影响了IMC层厚度,从而决定了接头的性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓呈敏
程东海
陈国财
李东阳
李文杰
陈益平
胡德安
关键词:  熔池形态  激光熔钎焊  焊接线能量  互扩散系数  环形流动    
Abstract: T2 copper plate and 2A16 aluminum alloy plate were welded by laser beam welding with fusion mode and fusion brazing mode, the mechanical properties of the joint were analyzed, and the microstructure and interface morphology of the joint were studied. The effect of morphology of molten pool on the microstructure and properties of the joint were described. The results show that the molten pool is obtained by laser fusion welding, when the welding energy Q=1 160 J/cm, the interface layer is composed of Al4Cu9+Al2Cu compound and (α-Al)+(θ-Al2Cu) eutectic structure with a total thickness of 60.9 μm. The molten pool is obtained by laser welding-braing, when Q=1 466.67 J/cm, the tensile strength of joint is 274.25 MPa, which is 280.9% higher than that of fusion welding joint, the interfacial layer is composed of CuZn5 and Al2Cu compounds with a total thickness of 10.23 μm. The thickness of IMC layer is affected by the diffusion coefficient (Dfusion-welding > Dwelding-braing)and annular convection under different molten pool shapes, which determines the performance of the joint.
Key words:  form of molten pool    laser welding-brazing    welding heat input    interdiffusion coefficient    annular flow
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TG444+.74  
基金资助: 国家自然科学基金(51865034)
通讯作者:  70269@nchu.edu.cn   
作者简介:  邓呈敏,北京石油化工学院机械工程学院硕士研究生在读,主要研究方向为异种材料焊接技术。
程东海,南昌航空大学航空制造工程学院副教授,硕士研究生导师。2000年9月至2010年1月在北京科技大学获得材料成型及控制工程专业工学学士学位和材料加工工程专业工学博士学位。主持国家自然科学基金、航空基金、省教育厅基金、横向课题若干项,在国内外重要期刊发表学术论文60余篇。主要从事高能束焊接、钎焊等方向的研究工作。
引用本文:    
邓呈敏, 程东海, 陈国财, 李东阳, 李文杰, 陈益平, 胡德安. 熔池形态对铝-铜激光焊接头组织和性能的影响[J]. 材料导报, 2021, 35(20): 20052-20056.
DENG Chengmin, CHENG Donghai, CHEN Guocai, LI Dongyang, LI Wenjie, CHEN Yiping, HU De’an. Effect of Different Molten Pool on Microstructure and Properties of Aluminum-Copper Laser Weld Joint. Materials Reports, 2021, 35(20): 20052-20056.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090038  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20052
1 Wan X L, Wang L, Yao Z W, et al. Rare Metals,2019,43(5),494(in Chinese).
万秀莲,王龙,姚志文,等.稀有金属,2019,43(5),494.
2 Zhou L, Li Z Y, Zhao H Y, et al. Chinese Journal of Nonferrous Metals,2015,25(9),2389(in Chinese).
周利,李志勇,赵洪运,等.中国有色金属学报,2015,25(9),2389.
3 Kim Y S, Zhang S, Paik K W. Journal of the Microelectronics and Packaging Society,2015,22(1),35.
4 Xu J H, Gao D, Wang X X, et al. Journal of Materials Science, DOI:10.1007/s10853-020-04660-0.
5 Xue P, Xiao B L, Ni D R, et al. Materials Science & Engineering A,2010,527(21-22),5723.
6 Xue P, Ni D R, Wang D, et al. Materials Science & Engineering A,2011,528(13-14),4683.
7 Tan C W, Jiang Z G, Li L Q, et al. Materials & Design,2013,51,466.
8 Jiahu Ouyang, Yarrapareddy Eswar, Kovacevic Radovan. Journal of Materials Processing Technology,2006,172(1),110.
9 Bhattacharya T K, Das H, Pal T K. Transactions of Nonferrous Metals Society of China,2015,25(9),2833.
10 Mai T A, Spowage A C. Materials Science and Engineering: A,2004,374(1-2),224.
11 Li D, Zhao Y, Zhang Y. Transactions of the China Welding Institution,2014,35(2),47.
12 Baghjari S H, Gholambargani M, Mousavi S A A A. Lasers in Manufacturing and Materials Processing,2019,6(1),14.
13 Lee S J, Nakamura H, Kawahito Y, et al. Science & Technology of Wel-ding & Joining,2014,19(2),111.
14 Xue Z Q, Hu S S, Zuo D, et al. Transactions of the China Welding Institution,2013,34(10),54(in Chinese).
薛志清,胡绳荪,左迪,等.焊接学报,2013,34(10),54.
15 Li Z Y. Study on laser welding-brazing process and mechanism of aluminum/brass dissimilar metals. Master’s Thesis, Harbin Industrial University, China,2016(in Chinese).
李志勇.铝/黄铜异种金属激光熔钎焊工艺及机理研究.硕士学位论文,哈尔滨工业大学,2016.
16 Solchenbach T, Plapper P. Optics & Laser Technology,2013,54,249.
17 Jiang S Y, Li S C. Journal of Materials Heat Treatment,2014,35(8),213(in Chinese).
蒋淑英,李世春.材料热处理学报,2014,35(8),213.
18 Dong H G, Zhang X C, Yang J C, et al. China Mechanical Engineering,2014,25(8),1122(in Chinese).
董红刚,张旭超,杨继承,等.中国机械工程,2014,25(8),1122.
19 Qin J. Thermodynamic/kinetic study on interfacial bonding of Cu/Al composite tapes. Master’s Thesis, Jiangxi University of Science and Techno-logy, China,2012(in Chinese).
秦镜.Cu/Al复合带界面结合的热力学/动力学研究.硕士学位论文,江西理工大学,2012.
20 Li C. Molecular dynamics study on diffusion process of Al-Cu system. Master’s Thesis, Guangxi University, China,2014(in Chinese).
李昶.Al-Cu体系扩散过程的分子动力学研究.硕士学位论文,广西大学,2014.
[1] 戎易, 王德, 陈益平, 熊震宇, 程东海, 胡德安, 邹鹏远, 刘钊泽. 添加Ni中间层镁/钢激光熔钎焊接头的组织和性能[J]. 材料导报, 2021, 35(18): 18136-18140.
[2] 于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed