Service Failure of Sucker Rods and Development of Sucker Rod Steels: a Review
DONG Zhendong1, TONG Zhi1, ZHOU Hongyu1, WANG Huimin1, ZHENG Wenyue1, SUN Xiaoran1, DING Hui2
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China 2 HBIS Group Shisteel Company, Shijiazhuang, 050031, China
Abstract: As one of the important work pieces in oil production, sucker rods can transfer the kinetic energy of the ground pumping unit to the well pump. With the development of oil production engineering to corrosion wells, deep wells and even ultra-deep wells, the corrosion resistance, tensile strength, fatigue strength, and other properties of the ordinary sucker rod cannot meet the production requirements. This review summarizes classification standard of sucker rods, preparation methods, the application environment, and challenges of different grades of sucker rods (C, D, KD, and H grades). Service failures of sucker rod steel include corrosion, fatigue, mechanical wear, and so on. It is found that the failure of sucker rods is mainly caused by fatigue or corrosion fatigue. Under a corrosive environment, the sucker rod can form corrosion pittings, caused by electrochemical corrosion, which are the main source of a fatigue cracking. Under the action of pull-pull load or pull-push load, the sucker rod will fail owing to the fatigue fracture. This paper briefly introduces the service environment of sucker rod in various oil fields and the development history of sucker rod steel. The mechanism of anti-corrosion, resistance to hydrogen embrittlement and anti-fatigue of sucker rods is explored via the comparison of the microstructures from different heat treatment processes. Simultaneously the failure reasons and mechanisms of the common corrosion, fatigue and wear during the sucker rod operation are analyzed. Finally, the feasible way of developing high performance sucker rod in the future is discussed.
董振东, 童志, 周洪宇, 王慧敏, 郑文跃, 孙晓冉, 丁辉. 抽油杆钢材的发展和抽油杆的服役失效[J]. 材料导报, 2021, 35(19): 19161-19169.
DONG Zhendong, TONG Zhi, ZHOU Hongyu, WANG Huimin, ZHENG Wenyue, SUN Xiaoran, DING Hui. Service Failure of Sucker Rods and Development of Sucker Rod Steels: a Review. Materials Reports, 2021, 35(19): 19161-19169.
1 Zhang J J. Analysis and research on influencing factors of sucker rod breaking in ultra-deep well of the oilfield. Master's Thesis, Southwest Petroleum University, China, 2016(in Chinese). 张建军. 塔河油田超深井抽油杆断脱影响因素分析研究. 硕士学位论文, 西南石油大学, 2016. 2 Liang Y Z. China Petroleum and Chemical Standard and Quality, 2016(11), 87(in Chinese). 梁远柱.中国石油和化工标准与质量, 2016(11), 87. 3 Wang L, Wu S Y. China Petroleum and Chemical Standard and Quality, 2018(21), 119(in Chinese). 王磊, 武顺勇.中国石油和化工标准与质量, 2018(21), 119. 4 Takacs G. Sucker-Rod Pumping Handbook, Gulf Professional Publishing, US, 2015, pp. 57. 5 Yang H, Zhong W H, Liu Q, et al. Petrochemical Industry Technology, 2015, 22(10), 155(in Chinese). 杨洪, 钟文浩, 刘强, 等. 石化技术, 2015, 22(10), 155. 6 Hao L L. Study on sucker rod failure analysis and residual life. Master's Thesis, Daqing Petroleum College, China, 2008(in Chinese). 郝丽丽. 抽油杆失效分析及剩余寿命的研究. 硕士学位论文, 大庆石油学院, 2008. 7 Jiang Y Y. Xinjiang Iron and Steel, 2014(4), 5(in Chinese). 姜英禹. 新疆钢铁, 2014(4), 5. 8 Song L N, Lan P, Liu C X, et al. Journal of Iron and Steel Research, 2015, 27(7), 1(in Chinese). 宋丽娜, 兰鹏, 刘春秀, 等. 钢铁研究学报, 2015, 27(7), 1. 9 Xiao Z H, Mu J F. Shandong Metallurgy, 2014, 36(1), 7(in Chinese). 肖振会, 穆敬飞. 山东冶金, 2014, 36(1), 7. 10 Wang S L, Zheng Z Y. Oil Field Equipment, 2008(4), 24(in Chinese). 王少力, 郑子元. 石油矿场机械, 2008(4), 24. 11 Wu Z Z. Oil Field Equipment, 2001, 30(1), 10(in Chinese). 吴则中. 石油矿场机械, 2001, 30(1), 10. 12 Guan Y Z, Wang X H. Iron and Steel, 2003, 38(6), 54(in Chinese). 关玉佐, 王晓华. 钢铁, 2003, 38(6), 54. 13 Guan Y Z, Wang X H, Qi C F. Heat Treatment of Metals, 2003, 28(6), 22(in Chinese). 关玉佐, 王晓华, 齐长发. 金属热处理, 2003, 28(6), 22. 14 Shi K, Xu C M. Journal of Xi'an Shiyou University (Natural Science Edition), 2003, 18(3), 55(in Chinese). 石凯, 胥聪敏. 西安石油大学学报(自然科学版), 2003, 18(3), 55. 15 Liu B X, Wang Y G, Qi C F, et al. Special Steel, 2002, 23(4), 32(in Chinese). 刘宝喜, 王云阁, 齐长发, 等. 特殊钢, 2002, 23(4), 32. 16 Feng Y P, Hu Y L, Ma X J, et al. Ordnance Material Science and Engineering, 2018(1), 9(in Chinese). 冯跃平, 胡洪林, 马孝娟, 等.新疆钢铁, 2018(1), 9. 17 Li C L, Huang Y J, Wen Z H, et al. Metal Materials and Metallurgy Engineering. 2017, 45(Z1), 5(in Chinese). 李成良, 黄远坚, 温志红, 等. 金属材料与冶金工程, 2017, 45(Z1), 5. 18 Pan T, Chai X Y, Wang J G, et al. Journal of Iron and Steel Research (International), 2015, 22(11), 1037. 19 Yang Z H, Chen B C. Gansu Metallurgy, 2000(4), 20(in Chinese). 杨作宏, 陈伯春. 甘肃冶金, 2000(4), 20. 20 Xie C Q, Han Y, Liu H S, et al. Heat Treatment of Metals,2016, 41(6), 159(in Chinese). 谢春乾, 韩赟, 刘华赛, 等. 金属热处理, 2016, 41(6), 159. 21 Pichler A, Stiaszny P. Steel Research, 2016, 70(11), 457. 22 Li R, Xiao F M, Tang R H, et al. Journal of the Chinese Society of Rare Earths, 2019, 37(4), 438(in Chinese). 李睿, 肖方明, 唐仁衡, 等. 中国稀土学报, 2019, 37(4), 438. 23 Oriani R A. Acta Metallurgica, 1970, 18(1),147. 24 Liu Z Y, Dong C F. Journal of Chemical Industry and Engineering(China), 2008, 59(10), 2561(in Chinese). 刘智勇, 董超芳. 化工学报, 2008, 59(10), 2561. 25 Hao W K, Liu Z Y, Du C W, et al. Chinese Journal of Mechanical Engineering, 2014, 50(4), 39(in Chinese). 郝文魁, 刘智勇, 杜翠薇, 等. 机械工程学报, 2014, 50(4), 39. 26 Zhao T, Liu Z, Xu X, et al. Corrosion Science, 2019, 157, 146. 27 Wang M, Akiyama E, Tsuzaki K. Corrosion Science, 2007, 49(11), 4087. 28 Shen Z, Li Y H, Shan Y Y, et al. Acta Metallurgica Sinica, 2008, 44(2), 215(in Chinese). 沈卓, 李玉海, 单以银, 等. 金属学报, 2008, 44(2), 215. 29 Fan S P, Li X Y, Guo C E. Heat Treatment of Metals, 2015, 40(7), 153(in Chinese). 范世平, 李小彦, 郭纯恩. 金属热处理, 2015, 40(7), 153. 30 Wang J H, Li H, Xie C S, et al. Hot Working Technology, 2009, 38(6), 144(in Chinese). 王冀恒, 李惠, 谢春生, 等. 热加工工艺, 2009, 38(6), 144. 31 Li B, Chu S J, Ren X J. Science & Technology of Baotou Steel (Group) Corporation, 2008(5), 1(in Chinese). 李斌, 储少军, 任新建. 包钢科技, 2008(5), 1. 32 Ban J J, Zhu R Y, Zhu C P. In: Annual meeting of Heilongjiang mechanical engineering society 2002. Heilongjiang, China, 2002(in Chinese). 班景江, 朱瑞英, 朱长平. 2002年黑龙江省机械工程学会年会. 黑龙江, 2002. 33 Li Z, Ma C Y, Wu M H, et al. Hot Working Technolog, 2004(11), 29(in Chinese). 李智, 马春雨, 吴蒙华, 等. 热加工工艺, 2004(11), 29. 34 Lu J L. Formation mechanism and control process of MnS in non-quenched and tempered steel for large crankshaft. Master's Thesis, University of Science & Technology Beijing, China, 2020(in Chinese). 鲁金龙.大规格曲轴用非调质钢中MnS形成机理及控制工艺研究. 硕士学位论文, 北京科技大学, 2020. 35 Shen Y, Deng X Y, Zhang Y J, et al. Metal Products, 2020, 46(4), 45(in Chinese). 沈艳, 邓向阳, 张艳军, 等. 金属制品, 2020, 46(4), 45. 36 Yi M. Development of 1000 MPa low carbon bainitic steel for sucker rod. Master's Thesis, Northeast Petroleum University, China, 2015(in Chinese). 易敏. 1000MPa级低碳贝氏体抽油杆用钢的研制开发. 硕士学位论文, 东北大学, 2015. 37 Enomoto M, Hirakami D, Tarui T. Metallurgical and Materials Transactions A, 2012, 43(2), 572. 38 Shao C W. Study on microstructure control and hydrogen embrittlement sensitivity of middle manganese steel containing aluminum in high strength plasticizer. Master's Thesis, Beijing Jiaotong University, China, 2018(in Chinese). 邵成伟. 高强塑积含铝中锰钢组织调控及氢脆敏感性研究. 硕士学位论文, 北京交通大学, 2018. 39 Clarke A J, Klemm-Toole J, Clarke K D, et al. Metallurgical and Materials Transactions A, 2020, 51, 4984. 40 Chen L, Xiong X, Tao X, et al. Corrosion Science, 2020, 166, 108428. 41 Liu M. Study on microstructure and sulfide stress cracking mechanism of C110 casing. Master's Thesis, Shanghai University, China, 2018(in Chinese). 刘敏. C110油套管微观结构和硫化物应力开裂机理研究. 硕士学位论文, 上海大学, 2018. 42 Shi R J, Ma Y, Wang Z D, et al. Acta Materialia, 2020, 200, 686. 43 Han Z Y, Huang X G. Journal of Materials Research and Technology, 2019, 8(1), 788. 44 Javidi M, Haghshenas S M S, Shariat M H, et al. Corrosion Science, 2020, 163, 108230. 45 Asadian M, Sabzi M, Anijdan S H M, et al. International Journal of Pressure Vessels and Piping, 2019, 171, 184. 46 Pradhan A, Vishwakarma M, Dwivedi S K. Materials Today, Procee-dings, 2020, 26(2), 3015. 47 Matsumoto Y, Miyashita T, Takai K. Materials Science & Engineering A, 2018, 735, 61. 48 Xiao W W, Xu Y Y, Li F, et al. Corrosion & Protection, 2019, 40(8), 614(in Chinese). 肖雯雯, 许艳艳, 李芳, 等. 腐蚀与防护, 2019, 40(8), 614. 49 Li D J, Wang W, Pang B, et al. Transactions of Materials and Heat Treatment, 2017, 38(3), 121(in Chinese). 李德君, 王伟, 庞斌, 等. 材料热处理学报, 2017, 38(3), 121. 50 Benhaddad S, Lee G. Practical Failure Analysis, 2001, 1(2), 47. 51 Zhao L N. Study on the mechanism of sucker rod breaking and its counter measures. Master's Thesis, China University of Petroleum (East China), China,2017(in Chinese). 赵立宁. 抽油杆断脱机理及防断脱对策研究. 硕士学位论文, 中国石油大学(华东), 2017. 52 Shi S M.In: The 14th Ningxia Young Scientists Forum on Petrochemical special Forum. Yinchuan, China,2018,pp. 119(in Chinese). 石少敏. 第十四届宁夏青年科学家论坛石化专题论坛. 银川, 2018,pp. 119. 53 Wang L, Wu S Y. China Petroleum and Chemical Standard and Quality, 2018, 38(21), 119(in Chinese). 王磊, 武顺勇.中国石油和化工标准与质量, 2018, 38(21), 119. 54 Murtaza G, Akid R. Engineering Fracture Mechanics, 2000, 67, 461. 55 Ding W, Peng Z H, Zhang Y, et al. Petroleum Drilling Techniques, 2019, 47(4), 47(in Chinese). 丁雯, 彭振华, 张园, 等. 石油钻探技术, 2019, 47(4), 47. 56 Liao X, Huang Y, Qiang B, et al. International Journal of Fatigue, 2020, 135, 146. 57 Zhou Y, Chen B, Gong B. Plant Maintenance Engineering, 2019(6), 94(in Chinese). 周洋, 陈彪, 宫博. 设备管理与维修, 2019(6), 94. 58 Zhang J, Li X F, Zhang X, et al. China Petroleum and Chemical Stan-dard and Quality, 2018, 38(14), 144(in Chinese). 张静, 李新发, 张旭, 等. 中国石油和化工标准与质量, 2018, 38(14), 144. 59 Tian W, Zhao X H, Bai Z Q, et al. Oil Field Equipment, 2008, 37(12), 52(in Chinese). 田伟, 赵雪会, 白真权, 等. 石油矿场机械, 2008, 37(12), 52. 60 Yang X F, Zhao X G, Wang H X, et al. New Chemical Materials, 2011, 39(S2), 11(in Chinese). 杨晓峰, 赵新刚, 王贤慧, 等. 化工新型材料, 2011, 39(S2), 11. 61 Zhang S C, Li T, Wen Q Z. Oil Field Equipment,2004(S1), 14(in Chinese). 张士诚, 李亭, 温庆志. 石油矿场机械, 2004(S1), 14. 62 Song S C. Inner Mongulia Petrochemical Industry, 2013, 39(7), 56(in Chinese). 宋述成. 内蒙古石油化工, 2013, 39(7), 56. 63 Fu Y, Zhang X B, Ren L X, et al. Energy Conservation in Petroleum & PetroChemical Industry, 2020, 10(2), 15(in Chinese). 付尧, 张学斌, 任立新, 等. 石油石化节能, 2020, 10(2), 15. 64 Gao J. Inner Mongulia Petrochemical Industry, 2008, 34(24), 26(in Chinese). 高军. 内蒙古石油化工, 2008, 34(24), 26.