Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19161-19169    https://doi.org/10.11896/cldb.20100160
  金属与金属基复合材料 |
抽油杆钢材的发展和抽油杆的服役失效
董振东1, 童志1, 周洪宇1, 王慧敏1, 郑文跃1, 孙晓冉1, 丁辉2
1 北京科技大学国家材料服役安全科学中心,北京 100083
2 河钢集团石钢公司,石家庄 050031
Service Failure of Sucker Rods and Development of Sucker Rod Steels: a Review
DONG Zhendong1, TONG Zhi1, ZHOU Hongyu1, WANG Huimin1, ZHENG Wenyue1, SUN Xiaoran1, DING Hui2
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
2 HBIS Group Shisteel Company, Shijiazhuang, 050031, China
下载:  全 文 ( PDF ) ( 3604KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 抽油杆可以把地面抽油机动能传递给抽油泵,是石油生产中重要的工件之一。随着采油工程向腐蚀井、深井、超深井发展,普通抽油杆的耐蚀性、抗拉强度和疲劳强度等性能已不能满足生产要求。本文综述了C级、D级、KD级和H级抽油杆的分类标准、制备方法、应用环境及面临的挑战。
抽油杆钢服役失效包括腐蚀、疲劳、机械磨损等。分析发现,抽油杆的失效主要是疲劳断裂或腐蚀疲劳断裂。在腐蚀性环境条件下,抽油杆会发生表面电化学腐蚀,形成腐蚀坑,而腐蚀坑是疲劳裂纹的主要萌生源。在拉-拉或拉-压载荷的作用下,抽油杆发生疲劳断裂。
本文简单介绍了抽油杆在各油田中的服役环境及抽油杆的发展史,通过对比抽油杆不同热处理工艺所产生的微观组织,探索其防腐蚀、防氢脆、防疲劳的机理,同时分析了抽油杆在使用过程中常见的腐蚀、疲劳、磨损等失效原因和机制,最后对未来开发高性能抽油杆的可行途径进行了探讨。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董振东
童志
周洪宇
王慧敏
郑文跃
孙晓冉
丁辉
关键词:  抽油杆钢  热处理工艺  失效  疲劳  氢脆    
Abstract: As one of the important work pieces in oil production, sucker rods can transfer the kinetic energy of the ground pumping unit to the well pump. With the development of oil production engineering to corrosion wells, deep wells and even ultra-deep wells, the corrosion resistance, tensile strength, fatigue strength, and other properties of the ordinary sucker rod cannot meet the production requirements. This review summarizes classification standard of sucker rods, preparation methods, the application environment, and challenges of different grades of sucker rods (C, D, KD, and H grades).
Service failures of sucker rod steel include corrosion, fatigue, mechanical wear, and so on. It is found that the failure of sucker rods is mainly caused by fatigue or corrosion fatigue. Under a corrosive environment, the sucker rod can form corrosion pittings, caused by electrochemical corrosion, which are the main source of a fatigue cracking. Under the action of pull-pull load or pull-push load, the sucker rod will fail owing to the fatigue fracture.
This paper briefly introduces the service environment of sucker rod in various oil fields and the development history of sucker rod steel. The mechanism of anti-corrosion, resistance to hydrogen embrittlement and anti-fatigue of sucker rods is explored via the comparison of the microstructures from different heat treatment processes. Simultaneously the failure reasons and mechanisms of the common corrosion, fatigue and wear during the sucker rod operation are analyzed. Finally, the feasible way of developing high performance sucker rod in the future is discussed.
Key words:  sucker rod steel    heat treatment process    failure    fatigue    hydrogen embrittlement
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TE3  
基金资助: 北京市科技计划项目(Z201100004520011);中央高校基本科研业务费专项资金(FRF-TP-19-012A1)
通讯作者:  zheng_wenyue@ustb.edu.cn, hyzhou@ustb.edu.cn   
作者简介:  董振东,2016年毕业于青岛科技大学,获得工学学士学位。现为北京科技大学国家材料服役安全科学中心硕士研究生,在郑文跃教授指导下进行研究。主要研究方向为材料抗氢脆性能。
周洪宇,北京科技大学国家材料服役安全科学中心助理研究员。2010年毕业于佳木斯大学,获得工学学士学位。2018年毕业于北京科技大学,获得工学博士学位。目前主要研究方向为钢材服役性能优化和电子封装用金刚石/铝复合材料。发表文章8篇,授权专利5项。
郑文跃,国家特聘专家,北京科技大学杰出学者,国家材料服役安全科学中心教授、博士研究生导师。1983年毕业于北京钢铁学院,1988年获得英国曼彻斯特大学博士学位。新金属材料国家重点实验室客座教授、CSTM标准委员会材料服役标准分委会会员。目前主要研究方向为金属开裂与材料的环境损伤、高温高腐蚀性环境金属结构及涂层的设计、能源装备中材料的服役性能和防护涂层技术及在石油、交通等领域的应用。著书5部,在SCI、EI期刊及会议发表论文100余篇,非公开的商业报告30余篇。
引用本文:    
董振东, 童志, 周洪宇, 王慧敏, 郑文跃, 孙晓冉, 丁辉. 抽油杆钢材的发展和抽油杆的服役失效[J]. 材料导报, 2021, 35(19): 19161-19169.
DONG Zhendong, TONG Zhi, ZHOU Hongyu, WANG Huimin, ZHENG Wenyue, SUN Xiaoran, DING Hui. Service Failure of Sucker Rods and Development of Sucker Rod Steels: a Review. Materials Reports, 2021, 35(19): 19161-19169.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100160  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19161
1 Zhang J J. Analysis and research on influencing factors of sucker rod breaking in ultra-deep well of the oilfield. Master's Thesis, Southwest Petroleum University, China, 2016(in Chinese).
张建军. 塔河油田超深井抽油杆断脱影响因素分析研究. 硕士学位论文, 西南石油大学, 2016.
2 Liang Y Z. China Petroleum and Chemical Standard and Quality, 2016(11), 87(in Chinese).
梁远柱.中国石油和化工标准与质量, 2016(11), 87.
3 Wang L, Wu S Y. China Petroleum and Chemical Standard and Quality, 2018(21), 119(in Chinese).
王磊, 武顺勇.中国石油和化工标准与质量, 2018(21), 119.
4 Takacs G. Sucker-Rod Pumping Handbook, Gulf Professional Publishing, US, 2015, pp. 57.
5 Yang H, Zhong W H, Liu Q, et al. Petrochemical Industry Technology, 2015, 22(10), 155(in Chinese).
杨洪, 钟文浩, 刘强, 等. 石化技术, 2015, 22(10), 155.
6 Hao L L. Study on sucker rod failure analysis and residual life. Master's Thesis, Daqing Petroleum College, China, 2008(in Chinese).
郝丽丽. 抽油杆失效分析及剩余寿命的研究. 硕士学位论文, 大庆石油学院, 2008.
7 Jiang Y Y. Xinjiang Iron and Steel, 2014(4), 5(in Chinese).
姜英禹. 新疆钢铁, 2014(4), 5.
8 Song L N, Lan P, Liu C X, et al. Journal of Iron and Steel Research, 2015, 27(7), 1(in Chinese).
宋丽娜, 兰鹏, 刘春秀, 等. 钢铁研究学报, 2015, 27(7), 1.
9 Xiao Z H, Mu J F. Shandong Metallurgy, 2014, 36(1), 7(in Chinese).
肖振会, 穆敬飞. 山东冶金, 2014, 36(1), 7.
10 Wang S L, Zheng Z Y. Oil Field Equipment, 2008(4), 24(in Chinese).
王少力, 郑子元. 石油矿场机械, 2008(4), 24.
11 Wu Z Z. Oil Field Equipment, 2001, 30(1), 10(in Chinese).
吴则中. 石油矿场机械, 2001, 30(1), 10.
12 Guan Y Z, Wang X H. Iron and Steel, 2003, 38(6), 54(in Chinese).
关玉佐, 王晓华. 钢铁, 2003, 38(6), 54.
13 Guan Y Z, Wang X H, Qi C F. Heat Treatment of Metals, 2003, 28(6), 22(in Chinese).
关玉佐, 王晓华, 齐长发. 金属热处理, 2003, 28(6), 22.
14 Shi K, Xu C M. Journal of Xi'an Shiyou University (Natural Science Edition), 2003, 18(3), 55(in Chinese).
石凯, 胥聪敏. 西安石油大学学报(自然科学版), 2003, 18(3), 55.
15 Liu B X, Wang Y G, Qi C F, et al. Special Steel, 2002, 23(4), 32(in Chinese).
刘宝喜, 王云阁, 齐长发, 等. 特殊钢, 2002, 23(4), 32.
16 Feng Y P, Hu Y L, Ma X J, et al. Ordnance Material Science and Engineering, 2018(1), 9(in Chinese).
冯跃平, 胡洪林, 马孝娟, 等.新疆钢铁, 2018(1), 9.
17 Li C L, Huang Y J, Wen Z H, et al. Metal Materials and Metallurgy Engineering. 2017, 45(Z1), 5(in Chinese).
李成良, 黄远坚, 温志红, 等. 金属材料与冶金工程, 2017, 45(Z1), 5.
18 Pan T, Chai X Y, Wang J G, et al. Journal of Iron and Steel Research (International), 2015, 22(11), 1037.
19 Yang Z H, Chen B C. Gansu Metallurgy, 2000(4), 20(in Chinese).
杨作宏, 陈伯春. 甘肃冶金, 2000(4), 20.
20 Xie C Q, Han Y, Liu H S, et al. Heat Treatment of Metals, 2016, 41(6), 159(in Chinese).
谢春乾, 韩赟, 刘华赛, 等. 金属热处理, 2016, 41(6), 159.
21 Pichler A, Stiaszny P. Steel Research, 2016, 70(11), 457.
22 Li R, Xiao F M, Tang R H, et al. Journal of the Chinese Society of Rare Earths, 2019, 37(4), 438(in Chinese).
李睿, 肖方明, 唐仁衡, 等. 中国稀土学报, 2019, 37(4), 438.
23 Oriani R A. Acta Metallurgica, 1970, 18(1),147.
24 Liu Z Y, Dong C F. Journal of Chemical Industry and Engineering(China), 2008, 59(10), 2561(in Chinese).
刘智勇, 董超芳. 化工学报, 2008, 59(10), 2561.
25 Hao W K, Liu Z Y, Du C W, et al. Chinese Journal of Mechanical Engineering, 2014, 50(4), 39(in Chinese).
郝文魁, 刘智勇, 杜翠薇, 等. 机械工程学报, 2014, 50(4), 39.
26 Zhao T, Liu Z, Xu X, et al. Corrosion Science, 2019, 157, 146.
27 Wang M, Akiyama E, Tsuzaki K. Corrosion Science, 2007, 49(11), 4087.
28 Shen Z, Li Y H, Shan Y Y, et al. Acta Metallurgica Sinica, 2008, 44(2), 215(in Chinese).
沈卓, 李玉海, 单以银, 等. 金属学报, 2008, 44(2), 215.
29 Fan S P, Li X Y, Guo C E. Heat Treatment of Metals, 2015, 40(7), 153(in Chinese).
范世平, 李小彦, 郭纯恩. 金属热处理, 2015, 40(7), 153.
30 Wang J H, Li H, Xie C S, et al. Hot Working Technology, 2009, 38(6), 144(in Chinese).
王冀恒, 李惠, 谢春生, 等. 热加工工艺, 2009, 38(6), 144.
31 Li B, Chu S J, Ren X J. Science & Technology of Baotou Steel (Group) Corporation, 2008(5), 1(in Chinese).
李斌, 储少军, 任新建. 包钢科技, 2008(5), 1.
32 Ban J J, Zhu R Y, Zhu C P. In: Annual meeting of Heilongjiang mechanical engineering society 2002. Heilongjiang, China, 2002(in Chinese).
班景江, 朱瑞英, 朱长平. 2002年黑龙江省机械工程学会年会. 黑龙江, 2002.
33 Li Z, Ma C Y, Wu M H, et al. Hot Working Technolog, 2004(11), 29(in Chinese).
李智, 马春雨, 吴蒙华, 等. 热加工工艺, 2004(11), 29.
34 Lu J L. Formation mechanism and control process of MnS in non-quenched and tempered steel for large crankshaft. Master's Thesis, University of Science & Technology Beijing, China, 2020(in Chinese).
鲁金龙.大规格曲轴用非调质钢中MnS形成机理及控制工艺研究. 硕士学位论文, 北京科技大学, 2020.
35 Shen Y, Deng X Y, Zhang Y J, et al. Metal Products, 2020, 46(4), 45(in Chinese).
沈艳, 邓向阳, 张艳军, 等. 金属制品, 2020, 46(4), 45.
36 Yi M. Development of 1000 MPa low carbon bainitic steel for sucker rod. Master's Thesis, Northeast Petroleum University, China, 2015(in Chinese).
易敏. 1000MPa级低碳贝氏体抽油杆用钢的研制开发. 硕士学位论文, 东北大学, 2015.
37 Enomoto M, Hirakami D, Tarui T. Metallurgical and Materials Transactions A, 2012, 43(2), 572.
38 Shao C W. Study on microstructure control and hydrogen embrittlement sensitivity of middle manganese steel containing aluminum in high strength plasticizer. Master's Thesis, Beijing Jiaotong University, China, 2018(in Chinese).
邵成伟. 高强塑积含铝中锰钢组织调控及氢脆敏感性研究. 硕士学位论文, 北京交通大学, 2018.
39 Clarke A J, Klemm-Toole J, Clarke K D, et al. Metallurgical and Materials Transactions A, 2020, 51, 4984.
40 Chen L, Xiong X, Tao X, et al. Corrosion Science, 2020, 166, 108428.
41 Liu M. Study on microstructure and sulfide stress cracking mechanism of C110 casing. Master's Thesis, Shanghai University, China, 2018(in Chinese).
刘敏. C110油套管微观结构和硫化物应力开裂机理研究. 硕士学位论文, 上海大学, 2018.
42 Shi R J, Ma Y, Wang Z D, et al. Acta Materialia, 2020, 200, 686.
43 Han Z Y, Huang X G. Journal of Materials Research and Technology, 2019, 8(1), 788.
44 Javidi M, Haghshenas S M S, Shariat M H, et al. Corrosion Science, 2020, 163, 108230.
45 Asadian M, Sabzi M, Anijdan S H M, et al. International Journal of Pressure Vessels and Piping, 2019, 171, 184.
46 Pradhan A, Vishwakarma M, Dwivedi S K. Materials Today, Procee-dings, 2020, 26(2), 3015.
47 Matsumoto Y, Miyashita T, Takai K. Materials Science & Engineering A, 2018, 735, 61.
48 Xiao W W, Xu Y Y, Li F, et al. Corrosion & Protection, 2019, 40(8), 614(in Chinese).
肖雯雯, 许艳艳, 李芳, 等. 腐蚀与防护, 2019, 40(8), 614.
49 Li D J, Wang W, Pang B, et al. Transactions of Materials and Heat Treatment, 2017, 38(3), 121(in Chinese).
李德君, 王伟, 庞斌, 等. 材料热处理学报, 2017, 38(3), 121.
50 Benhaddad S, Lee G. Practical Failure Analysis, 2001, 1(2), 47.
51 Zhao L N. Study on the mechanism of sucker rod breaking and its counter measures. Master's Thesis, China University of Petroleum (East China), China,2017(in Chinese).
赵立宁. 抽油杆断脱机理及防断脱对策研究. 硕士学位论文, 中国石油大学(华东), 2017.
52 Shi S M.In: The 14th Ningxia Young Scientists Forum on Petrochemical special Forum. Yinchuan, China,2018,pp. 119(in Chinese).
石少敏. 第十四届宁夏青年科学家论坛石化专题论坛. 银川, 2018,pp. 119.
53 Wang L, Wu S Y. China Petroleum and Chemical Standard and Quality, 2018, 38(21), 119(in Chinese).
王磊, 武顺勇.中国石油和化工标准与质量, 2018, 38(21), 119.
54 Murtaza G, Akid R. Engineering Fracture Mechanics, 2000, 67, 461.
55 Ding W, Peng Z H, Zhang Y, et al. Petroleum Drilling Techniques, 2019, 47(4), 47(in Chinese).
丁雯, 彭振华, 张园, 等. 石油钻探技术, 2019, 47(4), 47.
56 Liao X, Huang Y, Qiang B, et al. International Journal of Fatigue, 2020, 135, 146.
57 Zhou Y, Chen B, Gong B. Plant Maintenance Engineering, 2019(6), 94(in Chinese).
周洋, 陈彪, 宫博. 设备管理与维修, 2019(6), 94.
58 Zhang J, Li X F, Zhang X, et al. China Petroleum and Chemical Stan-dard and Quality, 2018, 38(14), 144(in Chinese).
张静, 李新发, 张旭, 等. 中国石油和化工标准与质量, 2018, 38(14), 144.
59 Tian W, Zhao X H, Bai Z Q, et al. Oil Field Equipment, 2008, 37(12), 52(in Chinese).
田伟, 赵雪会, 白真权, 等. 石油矿场机械, 2008, 37(12), 52.
60 Yang X F, Zhao X G, Wang H X, et al. New Chemical Materials, 2011, 39(S2), 11(in Chinese).
杨晓峰, 赵新刚, 王贤慧, 等. 化工新型材料, 2011, 39(S2), 11.
61 Zhang S C, Li T, Wen Q Z. Oil Field Equipment,2004(S1), 14(in Chinese).
张士诚, 李亭, 温庆志. 石油矿场机械, 2004(S1), 14.
62 Song S C. Inner Mongulia Petrochemical Industry, 2013, 39(7), 56(in Chinese).
宋述成. 内蒙古石油化工, 2013, 39(7), 56.
63 Fu Y, Zhang X B, Ren L X, et al. Energy Conservation in Petroleum & PetroChemical Industry, 2020, 10(2), 15(in Chinese).
付尧, 张学斌, 任立新, 等. 石油石化节能, 2020, 10(2), 15.
64 Gao J. Inner Mongulia Petrochemical Industry, 2008, 34(24), 26(in Chinese).
高军. 内蒙古石油化工, 2008, 34(24), 26.
[1] 倪嘉, 史昆, 薛松海, 赵军, 刘时兵, 刘鸿羽, 李重阳. 航空发动机用热障涂层陶瓷材料的发展现状及展望[J]. 材料导报, 2021, 35(Z1): 163-168.
[2] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[3] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[4] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[5] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[6] 卢兵兵, 王海斗, 董丽虹, 赵云才, 王慧鹏. 金属磁记忆疲劳损伤检测的应用现状及发展前景[J]. 材料导报, 2021, 35(7): 7139-7144.
[7] 龚园军, 张军, 毛江鸿, 金伟良, 谭昱, 罗林. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146-6150.
[8] 刘扬, 曾丹, 曹磊, 王达. 钢-UHPC组合结构桥梁研究进展[J]. 材料导报, 2021, 35(3): 3104-3113.
[9] 付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
[10] 刘敬萱, 沈健, 李锡武, 闫丽珍, 闫宏伟, 刘宏伟, 温凯, 李亚楠. 6005A-T5铝合金搅拌摩擦焊接头组织与疲劳性能[J]. 材料导报, 2021, 35(2): 2092-2097.
[11] 张喜军, 仝配配, 蔺习雄, 李剑新, 李波. 基于线性振幅扫描试验评价硬质沥青的疲劳性能[J]. 材料导报, 2021, 35(18): 18083-18089.
[12] 高婧, 罗城. 基于SWT模型和威布尔分布的CFRP环带微动疲劳寿命预测[J]. 材料导报, 2021, 35(16): 16015-16020.
[13] 陈琨, 张祥林, 安子乾, 程羽佳, 程小全, 冯振宇. 温度对碳纤维平纹布正交层合板拉伸疲劳性能的影响[J]. 材料导报, 2021, 35(16): 16195-16200.
[14] 杨立军, 郑航, 李俊, 隋泽卉. 热处理对激光选区熔化成型316L合金综合性能的影响[J]. 材料导报, 2021, 35(12): 12103-12109.
[15] 罗学昆, 赵春玲, 查小晖, 郭婧, 王欣, 汤智慧, 宇波. 喷丸对TB6钛合金疲劳应力集中敏感性的影响[J]. 材料导报, 2021, 35(12): 12114-12118.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed