Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12103-12109    https://doi.org/10.11896/cldb.20050165
  金属与金属基复合材料 |
热处理对激光选区熔化成型316L合金综合性能的影响
杨立军1,2, 郑航1,2, 李俊1,2, 隋泽卉1,2
1 陕西科技大学机电工程学院,西安 710021
2 陕西科技大学生物材料仿生设计与制造研究所,西安 710021
Effect of Heat Treatment on Comprehensive Properties of Selective Laser Melting Manufacturing 316L Alloy
YANG Lijun1,2, ZHENG Hang1,2, LI Jun1,2, SUI Zehui1,2
1 College of Mechanical & Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
2 Institute of Bionic Design and Manufacturing of Biomaterials, Shaanxi University of Science and Technology, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 8738KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为获得力学性能优良的316L合金,研究了激光选区熔化(SLM)成型316L合金试样在400 ℃/2 h、900 ℃/2 h、1 050 ℃/2 h热处理后的微观组织与力学性能。使用拉伸试验机和冲击试验机分别对试样进行拉伸和冲击实验;用数显硬度计测试316L合金在不同热处理工艺下的硬度差别,通过光学显微镜和SEM观察试样的断裂表面组织形貌,分析断裂机理。采用电子背散射衍射仪观察热处理前后晶面的相位变化。结果表明:SLM成型试样在900 ℃/2 h水冷条件下,抗拉强度最高达到680 MPa;在1 050 ℃/2 h水冷条件下,试样具有最大(18%)的延伸率;试样的硬度随着热处理温度的升高呈现出先升高后降低的趋势。未处理的SLM成型试样沿沉积方向形成柱状晶粒,但经处理的试样随着热处理温度的升高,合金元素固溶重组,晶面位向差减小,得到较均匀的各向同性配置。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨立军
郑航
李俊
隋泽卉
关键词:  激光选区熔化  316L合金  热处理工艺  晶面位向差异    
Abstract: In order to obtain excellent mechanical properties, the microstructure and mechanical properties of 316L alloy samples formed by SLM samples after heat treatment at 400 ℃/2 h, 900 ℃/2 h and 1 050 ℃/2 h were studied. The tensile and impact tests were carried out on the samples by tensile tester and impact tester respectively; the hardness difference of 316L alloy under different heat treatment processes was tested by digital hardness tester; the fracture morphology was observed by optical microscope and SEM, and the fracture mechanism was analyzed. The phase change of crystal surface before and after heat treatment was studied by EBSD technology. The results showed that the tensile strength of SLM sample was up to 680 MPa at 900 ℃/2 h water cooling; the highest elongation was 18% under 1 050 ℃/2 h water cooling condition; the hardness increased first and then decreased with the increase of heat treatment temperature. The results showed that the columnar grains were formed along the deposition direction of the untreated SLM samples. With the increase of the heat treatment temperature, the alloy elements were solid solution recombined, forming elliptical grain structure, and the crystal plane orientation difference wss reduced, which was a more uniform isotropic configuration.
Key words:  laser selective melting    316L alloy    heat treatment process    orientation difference of crystal plan
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  ATG14  
  TN2  
基金资助: 陕西省教育厅专项科研计划项目(2020KJRC0008);西安市科技和工业信息化局(202030)
通讯作者:  yanglijun@sust.edu.cn   
作者简介:  杨立军,教授,工学博士,陕西科技大学机电工程学院副院长,主要从事3D打印及微纳仿生制造技术等方面的教学与研究工作。在激光选区熔化成型、牙齿种植体设计制造、人工骨微纳仿生设计与制造等方面取得一定的研究成果。在国内外重要期刊发表文章10多篇,授权发明专利6余项。
郑航,2018年9月就读于陕西科技大学,攻读工程硕士学位。于2019年3月至今在陕西科技大学生物材料仿生设计与制造研究所联合培养学习, 主要从事激光选区熔化316L成型工艺与热处理研究。
引用本文:    
杨立军, 郑航, 李俊, 隋泽卉. 热处理对激光选区熔化成型316L合金综合性能的影响[J]. 材料导报, 2021, 35(12): 12103-12109.
YANG Lijun, ZHENG Hang, LI Jun, SUI Zehui. Effect of Heat Treatment on Comprehensive Properties of Selective Laser Melting Manufacturing 316L Alloy. Materials Reports, 2021, 35(12): 12103-12109.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050165  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12103
1 Gu D D, Meiners W, Wissenbach K, et al. International Materials Reviews, 2013, 57(3), 133.
2 Yadroitsev I, Gusarov A, Yadroitsava I, et al. Journal OF Materials Processing Technology, 2010, 210(12), 1624.
3 He K T, Zhou L, Yang L C. Laser & Optoelectronics Progress, 2020, 57(9), 091404 (in Chinese).
贺可太, 周柳, 杨乐昌. 激光与光电子学进展, 2020, 57(9), 091404.
4 Wang X J, Yan Y L. Laser & Optoelectronics Progress, 2020, 57(23), 231401 (in Chinese).
王新军, 闫迎亮. 激光与光电子学进展, 2020, 57(23), 231401.
5 Zong X W, Gao Q, Zhou H Z. Chinese Journal of Lasers, 2019, 46 (5), 344 (in Chinese).
宗学文, 高倩, 周宏志. 中国激光, 2019, 46(5), 344.
6 Cheng L Y, Zhu X G, Liu Z W, et al. Transactions of Materials and Heat Treatment, 2020, 41(7), 80 (in Chinese).
程灵钰, 朱小刚, 刘正武, 等. 材料热处理学报, 2020, 41(7), 80.
7 Huang Y S, Tan C L, Ma W Y, et al. Transactions of Materials and Heat Treatment, 2017, 38 (11), 59 (in Chinese).
黄玉山, 谭超林, 马文有, 等. 材料热处理学报, 2017, 38(11), 59.
8 Yao Y S, Tang J P, Wang J, et al. Laser & Optoelectronics Progress, 2021, 58(1), 6 (in Chinese).
姚燕生, 唐建平, 汪俊. 激光与光电子学进展, 2021, 58(1), 6.
9 Huang Y B, Yang S L, Gu J X, et al. Materials Chemistry and Physics, 2020, 254(1), 123487.
10 Chola Elangeswaran, Antonio Cutolo. Materials and Design, 2020, 194(1), 108962.
11 Sachin Kurian, Reza Miraeifar. Mechanics of Materials, 2020, 148(1), 103478.
12 Bian P Y. Transactions of Materials and Heat Treatment, 2019, 40 (4), 90 (in Chinese).
边培莹. 材料热处理学报, 2019, 40(4), 90.
13 Yadollahi A, Shamsaei N, Thompson S M, et al. Materials Science and Engineering: A, 2015, 644(5), 171.
14 Ma Y Y, Liu Y D, Shi W T, et al. Laser & Optoelectronics Progress, 2019, 56 (10), 210 (in Chinese).
马英怡, 刘玉德, 石文天, 等. 激光与光电子学进展, 2019, 56(10), 210.
15 Liu Y, Li Z Y, Zhang X G, et al. Materials for Mechanical Engineering, 2018, 42 (5), 40 (in Chinese).
刘艳, 李宗义, 张晓刚, 等. 机械工程材料, 2018, 42(5), 40.
16 Jaehyun Y, Dohyung K, Kyeongsik H, et al. Materials Letters, 2020, 275(15), 128161.
17 Zan L, Chen J, Lin X, et al. Rare Metal Materials and Engineering, 2007 (4), 612 (in Chinese).
昝林, 陈静, 林鑫, 等. 稀有金属材料与工程, 2007(4), 612.
18 Wang D, Yang Y Q, He X R, et al. High Pow Las Part Beam, 2010, 22 (8), 1881 (in Chinese).
王迪, 杨永强, 何兴容, 等. 强激光与粒子束, 2010, 22(8), 1881.
19 Zhang X H, Lin X, Chen J, et al. Rare Metal Materials and Engineering, 2011, 40 (1), 142 (in Chinese).
张小红, 林鑫, 陈静, 等. 稀有金属材料与工程, 2011, 40(1), 142.
20 Yu J S, Qiu C J, Zhou Ju, et al. Laser & Optoelectronics Progress, 2012, 49 (1), 92 (in Chinese).
余金水, 邱长军, 周炬, 等. 激光与光电子学进展, 2012, 49(1), 92.
21 Shen Y F, Gu D D, Yu C Y, et al. China Mechanical Engineering, 2005, 16 (1), 67 (in Chinese).
沈以赴, 顾冬冬, 余承业, 等. 中国机械工程, 2005, 16(1), 67.
22 Amol B, Jaiveer S, Byung K K. et al. Journal of Materials Research and Technology, 2020, 9(4), 8867.
23 Yadroitsev I, Bertrand P H, Smurov I. Applied Surface Science, 2007, 253(19), 8064.
24 Tomasz Kurzynowski, Konrad Gruber, Wojciech Stopyra, et al. Materials Science & Engineering A, 2018, 718(7), 64.
25 Peng R H, Liu M S, Xue E C, et al. Journal of China Iron and Steel Research Institute, 1983 (2), 249 (in Chinese).
彭日辉, 刘末生, 薛恩臣, 等. 钢铁研究总院学报, 1983(2), 249.
26 Zan L, Thomas Voisin, Joseph T, et al. International Journal of plasticity, 2019, 12(9), 395.
27 Qin W B, Li J S, Liu Y Y, et al. Materials Letters, 2019, 254(1), 116.
28 Bassem Barkia, Pascal Aubry, Paul Ashtiani, et al. Journal of Materials Science & Technology, 2020, 41(15), 209.
29 Manjaiah M, Hascoet J Y, Rauch M. Materials Science and Engineering: B, 2020, 259, 114583.
30 Zhang G Q, Li J, Li J X, et al. Infrared and Laser Engineering, 2018, 47 (1), 163 (in Chinese).
张国庆, 李晋, 李俊鑫, 等. 红外与激光工程, 2018, 47(1), 163.
31 Kim K Y, Ye L. Composites Part Applied Science and Manufacturing, 2004, 35(4), 477.
32 Ding L, Li H X, Wang Y D, et al. Chinese Journal of Lasers, 2015, 42 (4), 187 (in Chinese).
丁利, 李怀学, 王玉岱, 等. 中国激光, 2015, 42(4), 187.
[1] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[2] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[3] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[4] 宗学文, 刘文杰, 张健, 杨雨蒙, 高中堂. 激光选区熔化与铸造成形TC4钛合金的力学性能分析[J]. 材料导报, 2020, 34(16): 16083-16086.
[5] 邹田春, 欧尧, 祝贺, 秦嘉徐. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10): 10098-10102.
[6] 丁雨田,高钰璧,豆正义,高鑫,贾智. GH3625合金管材冷变形行为及热处理工艺研究*[J]. 材料导报编辑部, 2017, 31(10): 70-76.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed