Effect of Heat Treatment on Comprehensive Properties of Selective Laser Melting Manufacturing 316L Alloy
YANG Lijun1,2, ZHENG Hang1,2, LI Jun1,2, SUI Zehui1,2
1 College of Mechanical & Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China 2 Institute of Bionic Design and Manufacturing of Biomaterials, Shaanxi University of Science and Technology, Xi'an 710021, China
Abstract: In order to obtain excellent mechanical properties, the microstructure and mechanical properties of 316L alloy samples formed by SLM samples after heat treatment at 400 ℃/2 h, 900 ℃/2 h and 1 050 ℃/2 h were studied. The tensile and impact tests were carried out on the samples by tensile tester and impact tester respectively; the hardness difference of 316L alloy under different heat treatment processes was tested by digital hardness tester; the fracture morphology was observed by optical microscope and SEM, and the fracture mechanism was analyzed. The phase change of crystal surface before and after heat treatment was studied by EBSD technology. The results showed that the tensile strength of SLM sample was up to 680 MPa at 900 ℃/2 h water cooling; the highest elongation was 18% under 1 050 ℃/2 h water cooling condition; the hardness increased first and then decreased with the increase of heat treatment temperature. The results showed that the columnar grains were formed along the deposition direction of the untreated SLM samples. With the increase of the heat treatment temperature, the alloy elements were solid solution recombined, forming elliptical grain structure, and the crystal plane orientation difference wss reduced, which was a more uniform isotropic configuration.
1 Gu D D, Meiners W, Wissenbach K, et al. International Materials Reviews, 2013, 57(3), 133. 2 Yadroitsev I, Gusarov A, Yadroitsava I, et al. Journal OF Materials Processing Technology, 2010, 210(12), 1624. 3 He K T, Zhou L, Yang L C. Laser & Optoelectronics Progress, 2020, 57(9), 091404 (in Chinese). 贺可太, 周柳, 杨乐昌. 激光与光电子学进展, 2020, 57(9), 091404. 4 Wang X J, Yan Y L. Laser & Optoelectronics Progress, 2020, 57(23), 231401 (in Chinese). 王新军, 闫迎亮. 激光与光电子学进展, 2020, 57(23), 231401. 5 Zong X W, Gao Q, Zhou H Z. Chinese Journal of Lasers, 2019, 46 (5), 344 (in Chinese). 宗学文, 高倩, 周宏志. 中国激光, 2019, 46(5), 344. 6 Cheng L Y, Zhu X G, Liu Z W, et al. Transactions of Materials and Heat Treatment, 2020, 41(7), 80 (in Chinese). 程灵钰, 朱小刚, 刘正武, 等. 材料热处理学报, 2020, 41(7), 80. 7 Huang Y S, Tan C L, Ma W Y, et al. Transactions of Materials and Heat Treatment, 2017, 38 (11), 59 (in Chinese). 黄玉山, 谭超林, 马文有, 等. 材料热处理学报, 2017, 38(11), 59. 8 Yao Y S, Tang J P, Wang J, et al. Laser & Optoelectronics Progress, 2021, 58(1), 6 (in Chinese). 姚燕生, 唐建平, 汪俊. 激光与光电子学进展, 2021, 58(1), 6. 9 Huang Y B, Yang S L, Gu J X, et al. Materials Chemistry and Physics, 2020, 254(1), 123487. 10 Chola Elangeswaran, Antonio Cutolo. Materials and Design, 2020, 194(1), 108962. 11 Sachin Kurian, Reza Miraeifar. Mechanics of Materials, 2020, 148(1), 103478. 12 Bian P Y. Transactions of Materials and Heat Treatment, 2019, 40 (4), 90 (in Chinese). 边培莹. 材料热处理学报, 2019, 40(4), 90. 13 Yadollahi A, Shamsaei N, Thompson S M, et al. Materials Science and Engineering: A, 2015, 644(5), 171. 14 Ma Y Y, Liu Y D, Shi W T, et al. Laser & Optoelectronics Progress, 2019, 56 (10), 210 (in Chinese). 马英怡, 刘玉德, 石文天, 等. 激光与光电子学进展, 2019, 56(10), 210. 15 Liu Y, Li Z Y, Zhang X G, et al. Materials for Mechanical Engineering, 2018, 42 (5), 40 (in Chinese). 刘艳, 李宗义, 张晓刚, 等. 机械工程材料, 2018, 42(5), 40. 16 Jaehyun Y, Dohyung K, Kyeongsik H, et al. Materials Letters, 2020, 275(15), 128161. 17 Zan L, Chen J, Lin X, et al. Rare Metal Materials and Engineering, 2007 (4), 612 (in Chinese). 昝林, 陈静, 林鑫, 等. 稀有金属材料与工程, 2007(4), 612. 18 Wang D, Yang Y Q, He X R, et al. High Pow Las Part Beam, 2010, 22 (8), 1881 (in Chinese). 王迪, 杨永强, 何兴容, 等. 强激光与粒子束, 2010, 22(8), 1881. 19 Zhang X H, Lin X, Chen J, et al. Rare Metal Materials and Engineering, 2011, 40 (1), 142 (in Chinese). 张小红, 林鑫, 陈静, 等. 稀有金属材料与工程, 2011, 40(1), 142. 20 Yu J S, Qiu C J, Zhou Ju, et al. Laser & Optoelectronics Progress, 2012, 49 (1), 92 (in Chinese). 余金水, 邱长军, 周炬, 等. 激光与光电子学进展, 2012, 49(1), 92. 21 Shen Y F, Gu D D, Yu C Y, et al. China Mechanical Engineering, 2005, 16 (1), 67 (in Chinese). 沈以赴, 顾冬冬, 余承业, 等. 中国机械工程, 2005, 16(1), 67. 22 Amol B, Jaiveer S, Byung K K. et al. Journal of Materials Research and Technology, 2020, 9(4), 8867. 23 Yadroitsev I, Bertrand P H, Smurov I. Applied Surface Science, 2007, 253(19), 8064. 24 Tomasz Kurzynowski, Konrad Gruber, Wojciech Stopyra, et al. Materials Science & Engineering A, 2018, 718(7), 64. 25 Peng R H, Liu M S, Xue E C, et al. Journal of China Iron and Steel Research Institute, 1983 (2), 249 (in Chinese). 彭日辉, 刘末生, 薛恩臣, 等. 钢铁研究总院学报, 1983(2), 249. 26 Zan L, Thomas Voisin, Joseph T, et al. International Journal of plasticity, 2019, 12(9), 395. 27 Qin W B, Li J S, Liu Y Y, et al. Materials Letters, 2019, 254(1), 116. 28 Bassem Barkia, Pascal Aubry, Paul Ashtiani, et al. Journal of Materials Science & Technology, 2020, 41(15), 209. 29 Manjaiah M, Hascoet J Y, Rauch M. Materials Science and Engineering: B, 2020, 259, 114583. 30 Zhang G Q, Li J, Li J X, et al. Infrared and Laser Engineering, 2018, 47 (1), 163 (in Chinese). 张国庆, 李晋, 李俊鑫, 等. 红外与激光工程, 2018, 47(1), 163. 31 Kim K Y, Ye L. Composites Part Applied Science and Manufacturing, 2004, 35(4), 477. 32 Ding L, Li H X, Wang Y D, et al. Chinese Journal of Lasers, 2015, 42 (4), 187 (in Chinese). 丁利, 李怀学, 王玉岱, 等. 中国激光, 2015, 42(4), 187.