Please wait a minute...
材料导报  2021, Vol. 35 Issue (16): 16195-16200    https://doi.org/10.11896/cldb.20070259
  高分子与聚合物基复合材料 |
温度对碳纤维平纹布正交层合板拉伸疲劳性能的影响
陈琨1, 张祥林2, 安子乾2, 程羽佳2, 程小全2, 冯振宇1
1 中国民航大学适航学院,天津 300300;
2 北京航空航天大学航空科学与工程学院,北京 100083
Effect of Temperature on Fatigue Properties of Carbon Fiber Orthogonal Composite Laminates
CHEN Kun1, ZHANG Xianglin2, AN Ziqian2, CHENG Yujia2, CHENG Xiaoquan2, FENG Zhenyu1
1 College of Airworthiness, Civil Aviation University of China, Tianjin 300300, China;
2 School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
下载:  全 文 ( PDF ) ( 5376KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 温度环境可降低复合材料的疲劳性能,在确定复合材料结构寿命时须考虑温度的影响。本试验测量了碳纤维平纹布正交层合板在低温干态(CTD)、常温干态(RTD)和高温干态(ETD)环境下的拉伸疲劳性能,获得了三种环境下复合材料的S-N曲线,分析了温度对复合材料疲劳性能的影响。基于试验结果,建立了温度条件下复合材料疲劳性能有限元分析模型,对复合材料的疲劳寿命进行了估算并分析了其损伤机理。线性拟合结果显示:在106疲劳寿命下,与RTD环境疲劳最大应力相比,CTD环境疲劳最大应力略有降低,而ETD环境疲劳最大应力下降明显。CTD环境下,试验件的疲劳破坏断口比较齐整,纤维基本在同一纵向位置断裂,断口附近基体基本完好,无分层现象;RTD环境下,试验件断口处也没有明显分层现象;ETD环境下,试验件出现了明显的分层,同时还有纤维拔出,且断口处基体开裂程度严重。有限元分析表明,CTD环境下试验件的疲劳断裂呈现脆断的特征,断裂截面平整,断裂区域窄;RTD与ETD环境下试验件的纤维疲劳断裂损伤的断裂截面不平整,断口不一,断裂区域相对较宽。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈琨
张祥林
安子乾
程羽佳
程小全
冯振宇
关键词:  碳纤维复合材料  正交层合板  温度  拉伸疲劳  损伤    
Abstract: The fatigue performance of composites decreases with the temperature increase. The effect of temperature should be considered when determining the composite structure life. In this paper, the tensile fatigue properties of orthotropic composite laminates in CTD, RTD and ETD environment were tested. The S-N curves in three environments were obtained, and the influence of temperature on fatigue properties of composite was analyzed. Based on experimental results, the fatigue finite element model (FEM) of composite under the temperature condition was established to simulate the fatigue life and damage mechanism. The linear fitting fatigue results show that the maximum fatigue stress in CTD environment is a little smaller than that in RTD environment, while the maximum fatigue stress in ETD environment is obvious less than that in RTD environment. In CTD environment, the fracture surface of fatigue failure is relatively neat, the fiber is basically broken at the same longitudinal position, and the matrix near the fracture surface is relatively intact. The degree of fracture is very low, and there is no delamination; In RTD environment, there is no obvious delamination at the fracture surface of the specimen; In ETD environment, there is obvious delamination along the thickness with fibers pulled out and serious matrix cracks. The FEM analysis shows that the fatigue failure of the specimen is brittle fracture under CTD environment, which shows flat fracture section and narrow fracture area, while the fracture section is not smooth and uniform with relatively wider fracture area under RTD and ETD environments.
Key words:  carbon fiber composite    orthogonal laminate    temperature    fatigue    damage
                    发布日期:  2021-09-07
ZTFLH:  V214.8  
  TB332  
基金资助: 航空科学基金(ASFC-201941067001)
通讯作者:  caucstructure@163.com   
作者简介:  陈琨,2014年11月毕业于南京航空航天大学,获得工学博士学位。于2015年3月在中国民航大学适航学院工作至今,主要从事航空器结构强度适航技术研究。
冯振宇,中国民航大学教授。1995年西北工业大学固体力学工学博士学位。主要从事航空器结构强度适航技术研究,重点研究复合材料疲劳和结构冲击动力学的实验和仿真技术,在国内外重要期刊发表文章20多篇,主持和参与20多项国家级及省部级项目。
引用本文:    
陈琨, 张祥林, 安子乾, 程羽佳, 程小全, 冯振宇. 温度对碳纤维平纹布正交层合板拉伸疲劳性能的影响[J]. 材料导报, 2021, 35(16): 16195-16200.
CHEN Kun, ZHANG Xianglin, AN Ziqian, CHENG Yujia, CHENG Xiaoquan, FENG Zhenyu. Effect of Temperature on Fatigue Properties of Carbon Fiber Orthogonal Composite Laminates. Materials Reports, 2021, 35(16): 16195-16200.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070259  或          http://www.mater-rep.com/CN/Y2021/V35/I16/16195
1 Huang W J,He Z P,Cheng X Q. High Technology Fiber Application, 2016, 41(5), 7(in Chinese).
黄文俊, 何志平, 程小全. 高科技纤维与应用, 2016, 41(5), 7.
2 Wang X G, Yu Y, Li S M, et al. Fiber Composites, 2011, 28(2), 44(in Chinese).
王兴刚, 于洋, 李树茂, 等. 纤维复合材料, 2011, 28 (2), 44.
3 Zhu J S, Wang Z, Ou F. New Technology and New Process, 2012, 33(9), 76(in Chinese).
朱晋生, 王卓, 欧峰. 新技术新工艺, 2012, 33(9), 76.
4 Sethi S, Ray B C. Advances in Colloid and Interface Science, 2015, 217, 43.
5 Zhao P. Research on the hygrothermal aging performance of FRP compo-sites. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2009(in Chinese).
赵鹏. 纤维增强树脂基复合材料湿热老化性能研究. 硕士学位论文, 南京航空航天大学, 2009.
6 Yu Z G, Yang S C, Song B F. Materials for Mechanical Engineering, 2009, 33(6), 51(in Chinese).
余治国, 杨胜春, 宋笔锋. 机械工程材料, 2009, 33(6), 51.
7 Ma B L, Feng Y, He Y T, et al. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2019, 20(7), 499.
8 Montesano J, Fawaz Z, Behdinan K, et al. Composite Structures, 2013, 101, 129.
9 Gu Y, Yao W X. Acta Materiae Compositae Sinica, 1999(3), 99,(in Chinese).
顾怡, 姚卫星. 复合材料学报, 1999(3), 99.
10 Jin H. Science and Technology Innovation Herald, 2014, 11(22), 76,(in Chinese).
金晖. 科技创新导报, 2014, 11(22), 76.
11 Li M, Zhang B Y. Fiber Composites, 2006(1), 3(in Chinese).
李敏, 张宝艳. 纤维复合材料, 2006(1), 3.
12 Liu S F, Cheng X Q, Bao J W. Polymer Materials Science & Enginee-ring, 2014, 30(9), 183(in Chinese).
刘淑峰, 程小全, 包建文. 高分子材料科学与工程, 2014, 30(9), 183.
13 Wang S M. Effect of temperature and humidity environment on mechanical properties of carbon fiber composites. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2011(in Chinese).
王世明. 温度与湿度环境对碳纤维复合材料力学行为的影响研究. 硕士学位论文, 南京航空航天大学, 2011.
14 Wang X J, Liang G Z, Zhang W, et al. Journal of Solid Rocket Technology, 2006(4), 301(in Chinese).
王晓洁, 梁国正, 张炜, 等. 固体火箭技术, 2006(4), 301.
15 Yang X D, An T, Zou T C, et al. Journal of Materials Engineering, 2019, 47(7), 84(in Chinese).
杨旭东, 安涛, 邹田春, 等. 材料工程, 2019, 47(7), 84.
16 Sha M, Xiong X, Xu M R, et al. High Technology Fiber Application, 2017, 42(4), 37(in Chinese).
沙勐, 熊欣, 许名瑞, 等. 高科技纤维与应用, 2017, 42(4), 37.
17 Zhang Y, Vassilopoulos AP, Keller T. Composites Science and Technology, 2009, 69(7), 1022.
18 Kawai M, Yagihashi Y, Hoshi H, et al. Advanced Composite Materials, 2013, 22(2), 79.
19 ASTM D3039 standard test method for tensile properties of polymer matrix composite materials, West Conshohocken, PA, ASTM International, 2008.
20 ASTM D3479 standard test method for tension-tension fatigue of polymer matrix composite materials, West Conshohocken, PA, ASTM Internatio-nal, 2007.
21 Liu Y Z. Fatigue behavior of composite laminates. Master's Thesis, Harbin Institure of Technology, China, 2015(in Chinese).
刘英芝. 复合材料层合板疲劳行为研究. 硕士学位论文, 哈尔滨工业大学, 2015.
22 Shokrieh M M, Lessard L B. Journal of Composite Materials, 2000, 34(13), 1056.
23 Tsai S W. Composite design(4th Edition), Think Composites, USA, 1988.
[1] 杨俊, 何创创, 罗小芳, 尚勇, 班秀峰. 掺RuO2对Mn1.4Co1.5Zn0.1陶瓷电性能的影响[J]. 材料导报, 2021, 35(Z1): 56-58.
[2] 倪嘉, 史昆, 薛松海, 赵军, 刘时兵, 刘鸿羽, 李重阳. 航空发动机用热障涂层陶瓷材料的发展现状及展望[J]. 材料导报, 2021, 35(Z1): 163-168.
[3] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[4] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[5] 张梦杰, 李翔, 乔师帅, 王元, 魏剑. 改性碳纳米管水泥基复合材料热电非平衡融冰性能[J]. 材料导报, 2021, 35(8): 8049-8055.
[6] 谢锐, 吕铮, 徐长伟, 刘春明. 热等静压温度对雾化合金粉制备的9Cr-ODS钢组织和性能的影响[J]. 材料导报, 2021, 35(8): 8169-8178.
[7] 杨少朋, 尉文超, 胡芳忠, 王毛球, 汪开忠, 王自敏, 时捷. 低碳齿轮钢18CrNiMo7-6奥氏体晶粒度长大规律[J]. 材料导报, 2021, 35(8): 8179-8183.
[8] 卢兵兵, 王海斗, 董丽虹, 赵云才, 王慧鹏. 金属磁记忆疲劳损伤检测的应用现状及发展前景[J]. 材料导报, 2021, 35(7): 7139-7144.
[9] 邵亚丽, 王喜明. 木材形状记忆效应与机理的研究进展[J]. 材料导报, 2021, 35(7): 7190-7198.
[10] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[11] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[12] 叶俊杰, 贺志荣, 张坤刚, 冯辉. 退火温度对Ti-50.8Ni-0.1Zr形状记忆合金丝记忆行为和力学性能的影响[J]. 材料导报, 2021, 35(4): 4118-4123.
[13] 朱振宇, 涂浩, 吴长军, 彭浩平, 王建华, 苏旭平. 熔铸工艺对2618铝合金中难溶相尺寸与分布的影响[J]. 材料导报, 2021, 35(4): 4129-4133.
[14] 陈克选, 王向余, 李宜炤, 陈彦强, 杜茵茵. 水冷条件下WAAM温度场的数值模拟研究[J]. 材料导报, 2021, 35(4): 4165-4169.
[15] 张墅野, 鲍天宇, 修子扬, 何鹏. 三维封装电迁移Cu互连线的多物理场模拟仿真[J]. 材料导报, 2021, 35(2): 2133-2138.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed