Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8169-8178    https://doi.org/10.11896/cldb.19090133
  金属与金属基复合材料 |
热等静压温度对雾化合金粉制备的9Cr-ODS钢组织和性能的影响
谢锐1, 吕铮2, 徐长伟1, 刘春明2
1 沈阳建筑大学材料科学与工程学院,沈阳 110168
2 东北大学材料科学与工程学院,材料各向异性与织构教育部重点实验室,沈阳 110819
The Effects of Hot Isostatic Pressing Temperature on Microstructures and Properties of 9Cr-ODS Steels Produced by Atomization Alloy Powder
XIE Rui1, LYU Zheng2, XU Changwei1, LIU Chunming2
1 School of Material Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 24559KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本实验以雾化合金粉制备的9Cr-ODS钢为研究对象,首先利用激光粒度仪、XRD、SEM、EDS等实验手段研究氧化物弥散强化钢雾化合金粉的球磨工艺,再利用EBSD、HAADF、SAXS等实验方法研究热等静压温度对雾化合金粉制备的9Cr-ODS钢的微观结构和力学性能的影响。实验结果表明雾化合金粉经过8 h球磨可以符合制备ODS钢的各项要求。900 ℃、1 100 ℃、1 200 ℃热等静压成型的9Cr-ODS钢的晶粒尺寸分别为0.36 μm、0.94 μm和1.66 μm。小角度X射线散射结果表明,在900 ℃、1 100 ℃和1 200 ℃ HIP成型的样品中,富Y、Ti、O析出相的分布密度最高值分别为3.94×1022 /m3、1.03×1022 /m3和8.66×1021 /m3。雾化合金粉制备的9Cr-ODS钢中的富Al、Ti、Cr氧化物相的分布密度随着热等静压温度的升高而降低。在雾化合金粉制备的ODS钢样品中均发现了富Y、Ti、O纳米析出相,且成型温度越高,富Y、Ti、O纳米析出相的分布密度越低。900 ℃热等静压成型样品的力学性能较为优异,成型温度升高,样品的力学性能逐渐下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢锐
吕铮
徐长伟
刘春明
关键词:  雾化合金粉  氧化物弥散强化钢  球磨  热等静压温度    
Abstract: In this paper 9Cr-ODS steels produced by atomization alloy powders were studied. The milling technology of atomization alloy powders were studied firstly by laser particle size analyzer, XRD, SEM, EDS and so on. The EBSD, TEM, HAADF and SAXS were applied to study the effect of hot isostatic pressing temperatures on the microstructure and mechanical properties of 9Cr-ODS steels. The experiment data show that the alloy powder can meet the requirements of preparing ODS steels after 8 h ball milling. The grain sizes of atomization alloy powders 9Cr-ODS steels hot isostatic pressing at 900 ℃, 1 100 ℃ and 1 200 ℃ are 0.36 μm, 0.94 μm and 1.66 μm, respectively. The small angle X-ray scattering results show that the distribution densities of Y, Ti, O enrich nano-precipitates in the 9Cr-ODS steels produced by atomization alloy powders are 3.94×1022/m3, 1.03×1022/m3 and 8.66×1021/m3. The distribution densities of Al, Ti, Cr oxides decrease as hot isostatic pressing temperatures rise. The Y, Ti, O enrich nano-precipitates are found in the 9Cr-ODS steels produced by atomization alloy powders. As the hot isostatic pressing temperatures rise, the distribution densities Y, Ti, O enrich nano-precipitates decreased. The sample of 9Cr-ODS steel hot isostatic pressing at 900 ℃ display excellent mechanical properties. The mechanical properties decrease as hot isostatic pressing temperature rise.
Key words:  atomization alloy powder    oxide dispersion strengthen    ball milling    HIP temperatures
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  TB31  
基金资助: 国家自然科学基金/青年科学基金(51601031);辽宁省自然科学基金面上项目(2017540306)
通讯作者:  xierui198479@126.com   
作者简介:  谢锐,沈阳建筑大学讲师。2007年于沈阳建筑大学获得无机非金属材料工程学士学位,2010年9月至2015年7于东北大学获得材料学博士学位。博士毕业后继续在东北大学冶金工程博士后流动站工作。工作期限为2015年10月至2018年3月。2018年3月博士后出站到沈阳建筑大学任教工作。至今,已公开发表学术论文超过15篇,获得国家专利授权两项。研究领域主要围绕国家重点发展的先进金属材料、核反应堆用金属结构材料。同时,他的研究还获得了国家自然科学基金青年科学家基金项目、国家重大研发专项子课题、辽宁省自然科学基金等项目的支持。
引用本文:    
谢锐, 吕铮, 徐长伟, 刘春明. 热等静压温度对雾化合金粉制备的9Cr-ODS钢组织和性能的影响[J]. 材料导报, 2021, 35(8): 8169-8178.
XIE Rui, LYU Zheng, XU Changwei, LIU Chunming. The Effects of Hot Isostatic Pressing Temperature on Microstructures and Properties of 9Cr-ODS Steels Produced by Atomization Alloy Powder. Materials Reports, 2021, 35(8): 8169-8178.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090133  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8169
1 Xu Mi. China Nuclear Power,2009,2(2),106(in Chinese).
徐銤.中国核电,2009,2(2),106.
2 Locatelli G, Mancini M, Todeschini N. Energy Policy,2013,61,1503.
3 Azevedo C R F. Engineering Failure Analysis,2011,18(8),1943.
4 Lyu Zheng. Atomic Energy Science and Technology,2011,45(9),1105(in Chinese).
吕铮.原子能科学技术,2011,45(9),1105.
5 Odette G R, Alinger M J, Wirth B D. Annual Review of Materials Research,2008,38,471.
6 Ukai S, Comprehensive Nuclear Materials,2012,4,241.
7 Wang L, Bai Z, Shen H, et al. Journal of Nuclear Materials,2017,488,319.
8 Li Z Y, Lu Z, Xie R, et al. Materials Science & Engineering A,2016,660,52.
9 Kimura A, Kasada R, Iwata N Y, et al. Journal of Nuclear Materials,2011,417(1-3),176.
10 Shi Y N, Lu Z, Xu H J, et al. Journal of Alloys and Compounds,2019,791,121.
11 Iwata N Y, Kimura A, Fujiwara M, et al. Journal of Nuclear Materials,2007,367-370,191.
12 Dai L, Liu Y C, Dong Z Z. Powder Technology,2012,217,281.
13 Guo Lina. The research on oxide dispersion strength (ODS) ferritic steel by chemical method. Ph.D. Thesis, University of Science and Technology Beijing, China,2010(in Chinese).
郭丽娜.化学法制备氧化物弥散强化(ODS)铁素体钢研究.博士学位论文,北京科技大学,2010.
14 Zhang G M, Zhou Z J, Mo K, et al. Journal of Alloys and Compounds,2015,648,223.
15 Zhang G M, Zhou Z J, Mo K, et al. Materials and Design,2016,98,61.
16 Lu Chenyang. Microstructure and irradiation effect of nano-structural oxide dispersion steels. Ph.D. Thesis, Northeastern University, China,2014(in Chinese).
卢晨阳.纳米结构氧化物弥散强化钢的微观结构与辐照效应.博士学位论文,东北大学,2014.
17 麦振洪.同步辐射光源及其应用(上册),科学出版社,2013.
18 Beaucage G. Journal of Applied Crystallography,1996,29,134.
19 Braun A, Huggins F E, Seifert S, et al. Combustion and Flame,2004,137,63.
20 Zheng F, Xie M, Liu J, et al. Materials Science and Engineering: A,2001,304-306,579.
21 He Z W, Wang M Z. Powder Metallurgy Industry,2007(4),5(in Chinese).
贺战文,王明智.粉末冶金工业,2007(4),5.
22 Li Yunpeng. Investigation on preparation, microstructure and mechanical properties of nano-structured 9Cr-ODS steel. Master's Thesis, Northeas-tern University, China,2012(in Chinese).
李云鹏.纳米结构9Cr-ODS钢的制备及其组织与性能的研究.硕士学位论文,东北大学,2012.
23 Sakasegawa H, Legendre F, Boulanger L, et al. Journal of Nuclear Materials,2011,417(1-3),229.
24 Alinger M J, Odette G R, Hoelzer D T. Acta Materialia,2009,57(2),392.
25 Toualbi L, Ratti M, André G, et al. Journal of Nuclear Materials,2011,417(1-3),225.
26 Lu C Y, Lu Z, Xie R, et al. Materials Characterization,2017,134,35.
27 Cayron C, Montani A, Venet D, Carlan Y de. Journal of Nuclear Mate-rials,2010,399(2-3),219.
28 Ribis J, Carlan Y de. Acta Materialia,2012,60(1),238.
29 Wang X L, Liu C T, Keiderling U, et al. Journal of Alloys and Compounds,2012,529,96.
30 He P, Klimenkov M, Lindau R, et al. Journal of Nuclear Mate-rials,2012,428(1-3),131.
31 Lu C Y, Lv Z, Xie R, et al. Journal of Nuclear Materials,2014,455(1-3),366.
32 Bhattacharyya D, Dickerson P, Odette G R, et al. Philosophical Magazine,2012,92(16),2089.
33 Steckmeyer A, Praud M, Fournier B, et al. Journal of Nuclear Materials,2010,405(2),95.
34 Praud M, Mompiou F, Malaplate J, et al. Journal of Nuclear Materials,2012,428,90.
35 Schneibel J H, Heilmaier M, Blum W, et al. Acta Materialia,2011,59(3),1300.
36 Preininger D. Journal of Nuclear Materials,2004,329-333,362.
37 Kim J H, Byun T S, Hoelzer D T, et al. Materials Science and Enginee-ring A,2013,559,111.
38 Ukai S, Okuda T, Fujiwara M, et al. Journal of Nuclear Science and Technology,2002,39(8),872.
[1] 刘贵民, 杜林飞, 闫涛, 惠阳. Cu-Al2O3复合粉末颗粒原位生成机制探究[J]. 材料导报, 2020, 34(8): 8031-8035.
[2] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[3] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[4] 陈灵芝, 周张健, CarstenSchroer. 铅冷能源系统中液态金属与铁基合金相容性的研究进展[J]. 材料导报, 2020, 34(5): 5096-5101.
[5] 谢锐, 吕铮, 徐长伟, 刘春明. 钛元素对9Cr氧化物弥散强化钢微观组织和拉伸性能的影响[J]. 材料导报, 2020, 34(22): 22111-22117.
[6] 魏钰坤, 廖海峰, 颜海涛, 吴小乐, 戴乐阳. 介质阻挡放电等离子体辅助球磨对纳米TiO2粉体的表面改性[J]. 材料导报, 2020, 34(14): 14039-14044.
[7] 张春旋, 李艳辉, 李亚楠, 张伟. 铁基FeSiBPCu纳米晶软磁合金粉体的制备及电磁波吸收性能[J]. 材料导报, 2020, 34(10): 10076-10081.
[8] 包朝玲, 陈秀琼, 雷梦圆, 柯超然, 张威, 颜慧琼, 林强. 基于湿法球磨改性蒙脱土构建可负载疏水药物的海藻酸盐/有机蒙脱土复合凝胶微球及其释药性[J]. 材料导报, 2020, 34(10): 10171-10176.
[9] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[10] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[11] 徐帅, 陈灵芝, 曹书光, 贾皓东, 周张健. 先进核能系统用ODS钢的显微组织设计与调控研究进展[J]. 材料导报, 2019, 33(1): 78-89.
[12] 陶俊, 王晓峰, 韩仲熙, 冯博, 南海, 谢中元, 黄亚峰. 铝粉/聚四氟乙烯机械活化含能材料的制备及其微观性能研究[J]. 材料导报, 2018, 32(6): 894-898.
[13] 马晨雨, 李晓禹, 张绘, 李建强, 赵建玲, 贺刚, 李江涛, 齐涛. 亚微米级Ti4O7的制备及其光热转换性能[J]. 材料导报, 2018, 32(23): 4079-4083.
[14] 周影影, 谢辉, 陶世平, 周万城. 球磨时间对FeSi合金吸波性能的影响[J]. 材料导报, 2018, 32(16): 2738-2742.
[15] 张修超, 蔡晓兰, 周蕾, 乔颖博, 吴灿, 张爽, 朱伟. 高能球磨工艺对B4C/Al复合粉体结构演变及分布均匀性的影响[J]. 材料导报, 2018, 32(15): 2653-2658.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed