Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8031-8035    https://doi.org/10.11896/cldb.18050223
  无机非金属及其复合材料 |
Cu-Al2O3复合粉末颗粒原位生成机制探究
刘贵民, 杜林飞, 闫涛, 惠阳
陆军装甲兵学院装备保障与再制造系,北京 100072
Study on In-situ Formation Mechanism of Cu-Al2O3 Composite Powder
LIU Guimin, DU Linfei, YAN Tao, HUI Yang
Department of Equipment Support and Remanufacturing, Army Academy of Armored Forces, Beijing 100072,China
下载:  全 文 ( PDF ) ( 4454KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以Cu-Al合金粉末和CuO粉末为原料,采用反应球磨法制备了Cu-Al2O3复合粉末。通过扫描电镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)等设备,研究了球磨时间对粉末形貌、粒径、物相、晶粒尺寸和内应变的影响,探究了球磨过程中粉末组织的演变过程,揭示了纳米Al2O3颗粒的原位生成机制。研究结果表明:反应球磨的最终产物为Cu和Al2O3。纳米Al2O3颗粒的原位生成是一个受扩散控制的过程,球磨过程中粉末颗粒从椭球状先后变为层片状、等轴状,颗粒粒径先增大后减小,层间距不断减小,粉末晶粒不断细化,内应变逐渐增大,为原子的扩散提供了快速通道。同时,CuO在Cu-Al合金粉末中形成了无数扩散-反应偶,降低了反应激活能,促进了纳米Al2O3颗粒的原位生成。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘贵民
杜林飞
闫涛
惠阳
关键词:  Cu-Al2O3  反应球磨  粉末组织演变  颗粒原位生成机制    
Abstract: Cu-Al2O3 composite powder was obtained by ball milling, using Cu-Al alloy powder and CuO powder as the raw materials. The effect of milling time on powder particles’ morphology, size, phase, crystalline size and internal strains were observed and analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM), etc. Meanwhile, powder microstructure evolution during ball milling was investigated, and the in-situ formation mechanism of Al2O3 nanoparticles was revealed. The result showed that the final product of ball milling was Cu and Al2O3.The process of in-situ formation of Al2O3 nanoparticles is controlled by diffusion. With the increase of milling time, the powder particles shape changed from ellipsoid to laminar and equiaxial, particle size first increased and then decreased, interlamellar spacing decreased continuously, the powder grains refined and the internal strain increased gradually. These changes provide a fast-track for atom diffusion. At the same time, the CuO particles in Cu-Al alloy powder formed numerous diffusion-reaction couples to reduce the reaction activation energy and promote the in-situ formation of Al2O3 nanoparticles.
Key words:  Cu-Al2O3    reaction ball milling    powder microstructure evolution    in-situ formation mechanism of particles
                    发布日期:  2020-04-25
ZTFLH:  TB333  
基金资助: 北京市自然科学基金(2152031)
通讯作者:  lgm1971@sina.com   
作者简介:  刘贵民,陆军装甲兵学院,教授,博士研究生导师。毕业于波兰华沙理工大学,材料学博士专业学位。主要从事金属基复合材料、表面工程、材料失效分析研究,在国内外重要期刊发表文章100多篇。
杜林飞,2018年12月毕业于陆军装甲兵学院,获得工学硕士学位。主要从事铜基复合材料的研究。
引用本文:    
刘贵民, 杜林飞, 闫涛, 惠阳. Cu-Al2O3复合粉末颗粒原位生成机制探究[J]. 材料导报, 2020, 34(8): 8031-8035.
LIU Guimin, DU Linfei, YAN Tao, HUI Yang. Study on In-situ Formation Mechanism of Cu-Al2O3 Composite Powder. Materials Reports, 2020, 34(8): 8031-8035.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050223  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8031
1 Strojnynedza A, Pietrzak K.Archives of Metallurgy & Materials, 2014, 59(4),1301.
2 Li B, Liu G M, Ding H D, et al.Rare Metal Materials and Engineering, 2014, 43(5),1272(in Chinese).
李斌, 刘贵民, 丁华东, 等.稀有金属材料与工程, 2014, 43(5),1272.
3 Zhang Y F, Ji Z, Liu G M, et al. Powder Metallurgy Technology,2016, 34(5),346(in Chinese).
张一帆, 纪箴, 刘贵民, 等.粉末冶金技术,2016, 34(5),346.
4 Zhao D, Song H Z, Sun H W, et al. Surface Technology, 2012, 41(3),105(in Chinese).
赵丹, 宋红章, 孙洪巍,等.表面技术, 2012, 41(3),105.
5 Ding J. Study on nano-ZrO2/Cu composite fabricated by in-situ chemical route. Ph.D. Thesis, Tianjin University, China, 2007(in Chinese).
丁俭. 原位化学法制备纳米ZrO2/Cu复合材料的研究. 博士学位论文,天津大学, 2007.
6 Li Y J, Wang X W, Ren F Z, et al. Journal of Henan University of Science and Technology (Natural Science),2014, 35(1),9(in Chinese).
李玉娟, 王晓伟, 任凤章,等. 河南科技大学学报(自然科学版), 2014, 35(1), 9.
7 Xu X, Li W, Wang Y, et al.Results in Physics, 2018, 9, 486.
8 Fan T, Sun Y R, Tang Y, et al. Powder Metallurgy Technology, 2015, 33(6), 432(in Chinese).
范涛, 孙艳荣, 唐怡,等. 粉末冶金技术, 2015, 33(6), 432.
9 Qiao Z J, Xue L H. Transactions of Materials and Heat Treatment, 2013, 34(9), 13(in Chinese).
乔志佳, 薛丽红.材料热处理学报, 2013, 34(9), 13.
10 Liu G M, Li B, Yan T, et al. Materials for Mechanical Engineering, 2015, 39(1), 63(in Chinese).
刘贵民, 李斌, 闫涛,等.机械工程材料, 2015, 39(1),63.
11 Warren B E.X-ray Diffraction. Addison-Wesley Pub Co, 1969.
12 Yan Peng, Lin Chenguang, Cui Shun, et al.Journal of Wuhan University of Technology- Mater. Sci. Ed., 2011, 26(5), 902.
13 Ying D Y, Zhang D L.Materials Science and Engineering A, 2000, 286, 152.
14 Li S, Wang K, Sun L, et al.Scripta Metallurgica et Materialia, 1992, 27, 437.
15 Li M X. Study on preparation technology and properties of oxide dispersion strengthens copper and iron. Master’s Thesis, University of Science and Technology Beijing, China, 2009(in Chinese).
李美霞. 氧化物弥散强化铜、铁的制备技术及性能研究. 硕士学位论文,北京科技大学, 2009.
16 Ye D L, Hu J H. Manual of practical inorganic materials thermodynamics data, Metallurgy Industry Press, China, 2002(in Chinese).
叶大伦, 胡建华.实用无机物热力学数据手册, 冶金工业出版社, 2002.
17 Xi S Q, Qu X Y, Liu X K, et al. Materials Science and Technology, 2000, 8(3), 88(in Chinese).
席生歧, 屈晓燕, 刘心宽, 等.材料科学与工艺, 2000, 8(3), 88.
18 Feng D, Shi C X, Liu Z G, et al. Introduction to material science, Che-mical Industry Press, China, 2006(in Chinese).
冯端, 师昌绪, 刘治国, 等.材料科学导论. 化学工业出版社, 2006.
19 Ma M L, Xi S Q, Zhou J E. Transactions of Materials and Heat Treatment, 2005, 26(4),25(in Chinese).
马明亮, 席生岐, 周敬恩. 材料热处理学报, 2005, 26(4),25.
[1] 宋凯强, 曾美琴, 朱敏, 胡仁宗, 鲁忠臣. 纳米相复合Al-Sn合金的反应球磨制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 68-72.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed