Please wait a minute...
材料导报  2020, Vol. 34 Issue (8): 8036-8041    https://doi.org/10.11896/cldb.19030019
  无机非金属及其复合材料 |
正交各向异性结构的三维无网格法稳态传热模型及应用
张建平, 胡慧瑶, 王树森, 龚曙光, 刘庭显
湘潭大学机械工程学院,湘潭 411105
Three-dimensional Meshless Steady Heat Transfer Analysis Model of Orthotropic Structure and Its Application
ZHANG Jianping, HU Huiyao, WANG Shusen, GONG Shuguang, LIU Tingxian
School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China
下载:  全 文 ( PDF ) ( 5018KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用无网格迦辽金(Element-free Galerkin,EFG)法建立了正交各向异性结构三维稳态传热分析的计算模型,并推导了其三维EFG法传热离散控制方程。基于该模型编写程序对正交各向异性材料热喷嘴和压力容器的稳态传热算例进行了分析,发现在相同节点分布下三维EFG法温度场比有限元结果更接近参考解,三维EFG传热模型的计算精度比有限元法高,从而验证了该模型的正确性和优越性。同时,对比了各向同性与各向异性结构的温度场分布规律和温度幅值,研究了三维热导率因子及三个材料方向角对传热性能的影响,并给出了这些参数的合理取值范围。结果表明:热导率因子和材料方向角对温度场影响很大,增大热导率因子和材料方向角可使最高温度下降且温度梯度变小;导热方向会随材料方向角发生旋转,三维热导率因子决定主导热方向。对于正交各向异性材料热喷嘴和压力容器,为取得较好的传热效果,建议三维热导率因子在8∶1∶16~16∶1∶32范围内取值,三个材料方向角在45~60°范围内取相同值。在三维复合材料传热结构设计中,合理选取热导率因子和材料方向角可增强结构传热性能、减小温度梯度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张建平
胡慧瑶
王树森
龚曙光
刘庭显
关键词:  正交各向异性结构  无网格迦辽金法  三维传热分析  材料方向角  三维热导率因子    
Abstract: Acalculation model for three-dimensional steady heat transfer of orthotropic structure was established using Element-free Galerkin (EFG) method and the discreted EFG governing equation for 3D heat transfer of orthotropic structure was deduced. The programs were developed to analyze the steady heat transfer of orthotropic material nozzle and pressure vessel based on the proposed model. It was found that the tempe-rature field of the three-dimensional EFG method was closer to the reference solution than that of the finite element method under the same node distribution. The calculation accuracy of the proposed model was higher than the finite element method, which verified the correctness and supe-riority of the present model. In addition, the temperature field and temperature amplitude of orthotropic structures were compared with isotropic structures. The effect of three-dimensional thermal conductivity factor and three material off-angles on the heat transfer performance was studied, and the reasonable range of these parameters was provided. The results show that thermal conductivity factor and material off-angle have a great influence on the temperature field. The increase of thermal conductivity factor and material off-angle causes the maximum temperature and the temperature gradient to decrease. The direction of heat conduction rotates with material off-angle and the main direction of heat conduction is determined by the 3D thermal conductivity factor. It is recommended that the three-dimensional thermal conductivity factor be chosen in the range of 8∶1∶16—16∶1∶32, and the three material off-angles should be chosen the same value at 45—60° for orthotropic material nozzle and pressure vessel in order to obtain better heat transfer performance. The reasonable selection of thermal conductivity factor and material off-angle can enhance the heat transfer performance and reduce the temperature gradient of the orthotropic structure during the thermal structure design of three-dimensional composite materials.
Key words:  orthotropic structure    Element-free Galerkin method    three-dimensional heat transfer analysis    material off-angle    3D thermal conductivity factor
                    发布日期:  2020-04-25
ZTFLH:  TB331  
基金资助: 国家自然科学基金(51975503;51875493);湖南省自然科学基金(2016JJ3120);湖南省教育厅科学研究项目(18C0087;16A210)
通讯作者:  zhangjp@xtu.edu.cn   
作者简介:  张建平,湘潭大学副教授,博士研究生导师。2013年12月毕业于华中科技大学,获动力机械及工程专业博士学位。主要从事CAE理论与多学科结构优化、动力机械CFD及数值传热学等方面的研究工作。在国内外重要期刊发表文章30余篇。
引用本文:    
张建平, 胡慧瑶, 王树森, 龚曙光, 刘庭显. 正交各向异性结构的三维无网格法稳态传热模型及应用[J]. 材料导报, 2020, 34(8): 8036-8041.
ZHANG Jianping, HU Huiyao, WANG Shusen, GONG Shuguang, LIU Tingxian. Three-dimensional Meshless Steady Heat Transfer Analysis Model of Orthotropic Structure and Its Application. Materials Reports, 2020, 34(8): 8036-8041.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030019  或          http://www.mater-rep.com/CN/Y2020/V34/I8/8036
1 Zhao B. International Communications in Heat and Mass Transfer, 2016, 74, 63.
2 Wang R Y, Guan Z D, Wang Q, et al. Materials Reports: Research Papers, 2017,31(1),130(in Chinese).
王仁宇, 关志东, 王乾, 等. 材料导报:研究篇, 2017, 31(1), 130.
3 Peng W, Bo Y, Li J, et al. International Communications in Heat and Mass Transfer, 2015, 63, 8.
4 Cui M, Peng H F, Xu B B, et al. International Journal of Heat and Mass Transfer, 2018, 123, 251.
5 Haddad H, Guessasma M, Fortin J. Computational Materials Science, 2014, 81, 339.
6 Wang W D, Zhao G Q, Luan Y G. Materials Reports, 2002,16(9),13(in Chinese).
王卫东, 赵国群, 栾贻国. 材料导报, 2002, 16(9), 13.
7 Jaberzadeh E, Azhari M, Boroomand B. European Journal of Mechanics A/Solids, 2013, 42(4), 18.
8 Singh I V. International Journal of Heat and Mass Transfer, 2004, 47, 2123.
9 Zhang Z, Wang J F, Cheng Y M, et al. Science China, 2013, 56(8), 1568.
10 Meng Z J, Cheng H, Ma L D, et al. Science China Physics, Mechanics and Astronomy, 2019, 62(4), 40711.
11 Debbabi I, Hédi B S. Computational and Applied Mathematics, 2016, 37(2), 1.
12 Garg S, Pant M. Sādhanā, 2017, 42(3), 417.
13 Ling J, Yang D S, Zhai B W, et al. International Journal of Heat and Mass Transfer, 2017, 115, 361.
14 Chen J. International Journal of Fracture, 2005, 133(4), 303.
15 Rajesh K N, Rao B N. International Journal of Fracture, 2010, 164(2), 285.
16 Yang H T, Guo X F, He Y Q. Finite Elements in Analysis and Design, 2015, 93, 42.
17 Zhang J P, Zhou G Q, Gong S G, et al. International Journal of Thermal Sciences, 2017, 121, 163.
18 Zhang J P, Zhou G Q, Gong S G, et al. International Communications in Heat and Mass Transfer, 2017, 84, 134.
19 Barry W, Saigal S. International Journal for Numerical Methods in Engineering, 1999, 46, 671.
[1] 庄伟彬, 田宗伟, 刘广柱, 孙跃军. 原位自生TiCp/6061复合材料的组织、硬度及耐磨性能[J]. 材料导报, 2019, 33(22): 3762-3767.
[2] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[3] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[4] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[5] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[6] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[7] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[8] 胡晓峰, 余昆, 彭大硌, 邓立勋, 王辉虎, 罗平, 谢志雄, 董仕节. 铝基复合材料水解制氢及其水解产物的吸附性能[J]. 材料导报, 2018, 32(21): 3720-3725.
[9] 赵龙, 宋平新, 张迎九, 杨涛. 高导热金刚石/铜电子封装材料:制备技术、性能影响因素、界面结合改善方法[J]. 《材料导报》期刊社, 2018, 32(11): 1842-1851.
[10] 许慧, 赵洋, 任淑彬, 曲选辉. 真空压力熔渗与热压烧结制备(SiCp+Al2O3f)/2024Al复合材料的组织与拉伸性能分析[J]. 材料导报, 2018, 32(6): 951-956.
[11] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[12] 成小乐, 尹君, 屈银虎, 符寒光, 赵冰. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术[J]. 《材料导报》期刊社, 2018, 32(5): 796-807.
[13] 刘帅洋, 王爱琴, 吕世敬, 田捍卫. 铜铝层状复合材料界面特性及深加工研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 828-835.
[14] 袁战伟, 李付国, 王春伟, 王瑜, 郭亚杰, 周亮. 基于Murty准则的SiCp/Al复合材料热加工图研究[J]. 《材料导报》期刊社, 2018, 32(4): 657-661.
[15] 吴萍萍, 张静静. 镁基复合材料高温变形研究进展[J]. 材料导报, 2018, 32(17): 3041-3050.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed