Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3720-3725    https://doi.org/10.11896/j.issn.1005-023X.2018.21.006
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
铝基复合材料水解制氢及其水解产物的吸附性能
胡晓峰1, 2, 余昆1, 2, 彭大硌1, 2, 邓立勋2, 王辉虎1, 2, 罗平1, 2, 谢志雄1, 2, 董仕节1, 2
1 湖北工业大学绿色轻工材料湖北省重点实验室,武汉 430068;
2 湖北工业大学材料与化学工程学院,武汉 430068
Hydrolysis of Aluminum Composites for Hydrogen Production and the Adsorption Properties of Hydrolysates
HU Xiaofeng1, 2, YU Kun1, 2, PENG Daluo1, 2, DENG Lixun2, WANG Huihu1, 2, LUO Ping1, 2, XIE Zhixiong1, 2, DONG Shijie1, 2
1 Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068;
2 School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068
下载:  全 文 ( PDF ) ( 1766KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究以金属铝、低熔点金属镓、铟、锡以及无机盐NaCl和CaO等添加剂为原料,采用机械球磨法制备了具有高水解活性的铝基复合材料。研究了铝基复合材料的产氢性能及其水解产物对刚果红溶液的吸附性能,探究了初始浓度、水解产物质量以及环境温度对刚果红溶液吸附效果的影响。实验表明,NaCl加入量为10%的铝基复合材料Al alloys-10%NaCl具有最高的产氢率,其产氢率达83%。质量为1 g的Al alloys-10%NaCl在75 ℃水中的产氢量为1 020 mL。X射线衍射(XRD)与扫描电镜(SEM)结果表明,无机盐NaCl的加入,有效减小了Al颗粒的尺寸,使得水解产物颗粒更为细小,形成了纳米多孔结构的AlO(OH)。刚果红溶液吸附实验表明,Al alloys-10%NaCl的水解产物AlO(OH)对刚果红具有最佳的吸附效率,最大吸附率达到95%,且其对刚果红的吸附率随刚果红溶液的初始浓度、环境温度的升高而降低,随水解产物质量的增大而升高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡晓峰
余昆
彭大硌
邓立勋
王辉虎
罗平
谢志雄
董仕节
关键词:    铝基复合材料  AlO(OH)  吸附    
Abstract: In this paper, aluminum composites with high hydrolytic activity were prepared by mechanical milling using metal aluminum, low melting point metal gallium, indium, stannum, inorganic salts NaCl and CaO as additives. The hydrogen production rate of aluminum composites and the adsorption properties of the hydrolysate on Congo red solution were studied. The influence of the initial dye concentration, the mass of hydrolysate as well as ambient temperature on the Congo red adsorption efficiency was investigated. The results showed that Al alloys-10% NaCl with 10% NaCl addition had the highest hydrogen production rate, reaching 83%. The hydrogen production was 1 020 mL for 1 g of Al alloys-10% NaCl composites in water at 75 ℃. The results of XRD and SEM showed that the size of Al particles was effectively reduced due to the addition of inorganic salts NaCl, and the hydrolysate obtained by the reaction of aluminum-water was AlO(OH) powder with porous nanostructures, which presented the best adsorption ability for Congo red with the maximum adsorption efficiency of 95%. With the increase of the initial concentration of Congo red and the ambient temperature, the adsorption efficiency of hydrolysate decreased. However, the adsorption of Congo red was enhanced when the mass of hydrolysates increased.
Key words:  hydrogen    aluminum composites    AlO(OH)    adsorption
               出版日期:  2018-11-10      发布日期:  2018-11-21
ZTFLH:  TB331  
基金资助: 湖北省自然科学基金重点项目(2013CFA085); 湖北工业大学高层次人才启动基金项目(BSQD12119); 绿色轻工材料湖北省重点实验室开放基金([2013]2-22)
作者简介:  王辉虎:男,1978年生,博士,教授,主要研究方向为新能源材料制备与应用 E-mail:wanghuihu@hbut.edu.cn
引用本文:    
胡晓峰, 余昆, 彭大硌, 邓立勋, 王辉虎, 罗平, 谢志雄, 董仕节. 铝基复合材料水解制氢及其水解产物的吸附性能[J]. 材料导报, 2018, 32(21): 3720-3725.
HU Xiaofeng, YU Kun, PENG Daluo, DENG Lixun, WANG Huihu, LUO Ping, XIE Zhixiong, DONG Shijie. Hydrolysis of Aluminum Composites for Hydrogen Production and the Adsorption Properties of Hydrolysates. Materials Reports, 2018, 32(21): 3720-3725.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.006  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3720
1 Mahecha-botero A, Boyd T, Gulamhusein A, et al. Catalytic reforming of natural gas for hydrogen production in a pilot fluidized-bed membrane reactor: Mapping of operating and feed conditions[J].International Journal of Hydrogen Energy,2011,36:10727.
2 Shoko E, Mclellan B, Dicks A L, et al.Hydrogen from coal: Production and utilisation technologies[J].International Journal of Coal Geology,2006,65:213.
3 Z'graggen A, Haueter P, Trommer D, et al.Hydrogen production by steam-gasification of petroleum coke using concentrated solar power—Ⅱ reactor design, testing, and modeling[J].International Journal of Hydrogen Energy,2006,31:797.
4 Zhang Houcheng, Lin Guoxing, Chen Jincan.Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production[J].International Journal of Hydrogen Energy,2010,35:10851.
5 Ando Y, Tanaka T.Proposal for a new system for simultaneous production of hydrogen and hydrogen peroxide by water electrolysis[J].International Journal of Hydrogen Energy,2004,29:1349.
6 Walter M G, Warren E L, Mckone J R, et al.Solar water splitting cells[J].Chemical Reviews,2010,110:6446.
7 Balat H, Kırtay E.Hydrogen from biomass—present scenario and future prospects[J].International Journal of Hydrogen Energy,2010,35:7416.
8 Takehito H, Masato T, Masaaki H, et al.Hydrogen production from waste aluminum at different temperatures, with LCA[J].Materials Transactions,2005,46(5):1052.
9 Soler L, Candela A M, Macanas J, et al.Hydrogen generation by aluminum corrosion in seawater promoted by suspensions of aluminum hydroxide[J].International Journal of Hydrogen Energy,2009,34(20):8511.
10 Soler L, Candela A M, Macanas J, et al.In situ, generation of hydrogen from water by aluminum corrosion in solutions of sodium aluminate[J].Journal of Power Sources,2009,192(1):21.
11 Soler L, Candela A M, Macanas J, et al.Hydrogen generation from water and aluminum promoted by sodium stannate[J].International Journal of Hydrogen Energy,2010,35(3):1038.
12 Wang H Z, Leung D Y C, Leung M K H, et al. A review on hydrogen production using aluminum and aluminum alloys[J].Renewable & Sustainable Energy Reviews,2009,13(4):845.
13 Zou Hanbo, Chen Shengzhou, Zhao Zhaohui, et al.Hydrogen production by hydrolysis of aluminum[J].Journal of Alloys & Compounds,2013,578:380.
14 El-meligi A A. Hydrogen production by aluminum corrosion in hydrochloric acid and using inhibitors to control hydrogen evolution[J].International Journal of Hydrogen Energy,2011,36:10600.
15 Huang Xiani, Lv Chunju, Huang Yuexiang, et al.Effects of amalgam on hydrogen generation by hydrolysis of aluminum with water[J].Fuel & Energy Abstracts,2011,36:15119.
16 Cuomo J J, Woodall J M. Solid state renewable energy supply: US, 4358291[P].1982-11-09.
17 Woodall J M, Harmon E S, Koehler K C, et al. Power generation from solid aluminum: US,7938879[P].2011-05-10.
18 Kravchenko O V, Semenenko K N, Bulychev B M, et al.Activation of aluminum metal and its reaction with water[J].Journal of Alloys & Compounds,2005,397:58.
19 Zhao Chong, Xu Fen, Sun Lixian, et al.Hydrogen generation by Al-based materials hydrolysis[J].Progress in Chemistry,2016(12):1870(in Chinese).
赵冲,徐芬,孙立贤,等.铝基材料水解制氢技术[J].化学进展,2016(12):1870.
20 Zhou Xiangyang, Yang Tao, Wang Hui.Progress in hydrogen generation from Al-based alloy hydrolysis[J].Materials Review,2016,30(21):1(in Chinese).
周向阳,杨焘,王辉.铝基合金水解制氢的研究进展[J].材料导报,2016,30(21):1.
21 Fan Meiqiang, Liu Yingya, Yang Lini, et al.Hydrogen generation from the hydrolysis of Al-Sn alloys[J].Chemical Journal of Chinese Universities,2008,29(2):356(in Chinese).
范美强,刘颖雅,杨黎妮,等.铝锡合金制氢技术研究[J].高等学校化学学报,2008,29(2):356.
22 Dupiano P, Stamatis D, Dreizin E L.Hydrogen production by reacting water with mechanically milled composite aluminum-metal oxide powders[J].Fuel & Energy Abstracts,2011,36:4781.
23 Alinejad B, Mahmoodi K.A novel method for generating hydrogen by hydrolysis of highly activated aluminum nanoparticles in pure water[J].International Journal of Hydrogen Energy,2009,34:7934.
24 Chen Xiangying, Zhang Zhongjie, Li Xueliang, et al.Controlled hydrothermal synthesis of colloidal boehmite (γ-AlOOH) nanorods and nanoflakes and their conversion into γ-Al2O3 nanocrystals[J].Solid State Communications,2008,145(7-8):368.
25 Yang Hao, Ji Shengfu, Liu Xuefei, et al.Magnetically recyclable Pd/γ-AlOOH@Fe3O4, catalysts and their catalytic performance for the Heck coupling reaction[J].Science China Chemistry,2014,57(6):866.
26 Wang Jianqiang, Guo Pingjun, Qiao Minghua, et al.Preparation, characterization of Ru/AlOOH catalyst and its benzene partial hydrogenation behavior[J].Acta Chimica Sinica,2004,62(18):1765(in Chinese).
王建强,郭平均,乔明华,等.Ru/AlOOH催化剂的制备、表征及其苯选择加氢反应的研究[J].化学学报,2004,62(18):1765.
27 Xu Zhihua, Yu Jiaguo, Low Jingxiang, et al.Microemulsion-assisted synthesis of mesoporous aluminum oxyhydroxide nanoflakes for efficient removal of gaseous formaldehyde[J].Acs Applied Materials & Interfaces,2014,6(3):2111.
28 Hou Hongwei, Zhu You, Tang Guangling, et al.Lamellar γ-AlOOH architectures: Synthesis and application for the removal of HCN[J].Materials Characterization,2012,68:33.
29 Basuney S.Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent[J].Particuology,2015,22(5):66.
30 Park J H, Lee M K, Rhee C K, et al. Control of hydrolytic reaction of aluminum particles for aluminum oxide nanofibers[J].Materials Science & Engineering A,2004,375-377:1263.
31 Vostrikov A A, Fedyaeva O N.Mechanism and kinetics of Al2O3 nanoparticles formation by reaction of bulk Al with H2O and CO2 at sub- and supercritical conditions[J].Journal of Supercritical Fluids,2010,55:307.
32 Razavi-tousi S S, Nematollahi G A, Ebadzadeh T, et al. Modifying aluminum-water reaction to generate nano-sized aluminum hydroxide particles beside hydrogen[J].Powder Technology,2013,241:166.
33 Fan Meiqiang, Xu Fen, Sun Lixian, et al.Hydrolysis of ball milling Al-Bi-hydride and Al-Bi-salt mixture for hydrogen generation[J].Journal of Alloys & Compounds,2008,460:125.
34 Ilyukhina A V, Ilyukhin A S, Shkolnikov E I.Hydrogen generation from water by means of activated aluminum[J].International Journal of Hydrogen Energy,2012,37:16382.
35 Wang Huihu, Chang Ying, Dong Shijie, et al.Investigation on hydrogen production using multicomponent aluminum alloys at mild conditions and its mechanism[J].International Journal of Hydrogen Energy,2013,38:1236.
36 Wang Fanqiang, Wang Huihu, Wang Jian, et al.Effects of low melting point metals (Ga, In, Sn) on hydrolysis properties of aluminum alloys[J].Transactions of Nonferrous Metals Society of China,2016,26:152.
37 Hao Mingming, Chen Xingyu, Zhao Zhongwei, et al.Preparation of Al-Ca alloys and their properties for hydrogen generation through hydrolysis[J].The Chinese Journal of Nonferrous Metals,2012,22(8):2407(in Chinese).
郝明明,陈星宇,赵中伟,等.铝钙合金的制备及其水解制氢性能[J].中国有色金属学报,2012,22(8):2407.
38 Wang Huihu, Lu Jia, Dong Shijie, et al.Preparation and hydrolysis of aluminum based composites for hydrogen production in pure water[J].Materials Transactions,2014,55(6):892.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 陈坤, 李君, 曲大为, 卢强. 基于LCA评价模型的动力电池回收阶段环境性研究[J]. 材料导报, 2019, 33(z1): 53-56.
[3] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[4] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[5] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[6] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[7] 王宗乾, 杨海伟. pH值对海藻酸钠溶液黏度及体系中氢键的影响规律[J]. 材料导报, 2019, 33(8): 1289-1292.
[8] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[9] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[10] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[11] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[12] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[13] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[14] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[15] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed